Date: 02 April 2025

CURRICULUM VITAE

1. <u>Personal Details</u>

Permanent Home Address: Hativat Givati 43/1, Karmiel, 2199243

Cellular Phone: 972-546780114

Electronic Address: <u>d-ofir@migal.org.il</u> (Migal), <u>ofird@telhai.ac.il</u> (Tel-Hai), <u>d-ofir@bezeqint.net</u> (home)

2. <u>Higher Education</u>

A. Undergraduate and Graduate Studies

Period of Study	Name of Institution and Department	Degree	Year of Approval of Degree
2001 - 2005	Technion Institute of Technology (Israel).	Ph.D.	2005
1998 - 2001	Technion Institute of Technology (Israel).	M.Sc.	2001
1993 - 1997	Haifa University (Oranim campus, Israel)	B.Sc. and teaching certification	1997

B. Post-Doctoral Studies

Period of Study	Name of Institution, Department, and Host	Degree	Year of Completion
2005 - 2006	Migal - Galilee Research Institute (Israel), Dr. Doron Goldberg	-	2006

Dates	Name of Institution and Department	Rank/Position
2019 - Today	Tel-Hai College (Israel)	Senior lecturer and Senior staff member
2017 - Today	Migal - Galilee Research Institute, Molecular Phytopathology, and Biological Control Lab (Israel)	Senior researcher and principal investigator
2015 - 2017	Ohalo College (Israel)	Senior lecturer and Senior staff member
2009 - 2012	Tel-Hai Technology College (Israel)	Lecturer and staff member
2007 - 2017	Migal - Galilee Research Institute, Crop Protection and Biological Control Lab (Israel)	Research group leader
2006 - 2019	Tel-Hai College (Israel)	Lecturer and staff member
2005 - 2006	Migal - Galilee Research Institute (Israel)	Post-doctoral fellow at the laboratory of Dr. Doron Goldberg
2001 - 2015	Ohalo College (Israel)	Lecturer and staff member

3. Academic Ranks and Tenure in Institutes of Higher Education

4. Offices in Academic Administration

2025 - Today – Faculty representative on the committee for establishing regulations at the future Tel Hai University.

2024 - Today – Accompanying the IDF reserve servants students on behalf of the Faculty of Sciences, Tel-Hai College (Israel).

2021 - 2022 – Chairman of The Committee for the Advancement of Online Laboratory Courses in collaboration with universities in Israel and abroad, in the Faculty of Science in Tel-Hai College (Israel).

2007 - 2012 – Member of the pre-veterinary program leading committee at Tel-Hai College (Israel).

2007 - 2008 – Member of the research committees of Ohalo College (Israel).

2007 – Led the master's degree program preparation at Ohalo College (Israel).

5. Scholarly Positions and Activities outside the Institution

a. Representation in academic committees

2022 - 2026 – Israel's representative in the COST Action Management: CA21134 / Towards zero Pesticide AGRIculture: European Network for Sustainability (ToP-AGRI-Network), European Cooperation in Science & Technology. (Link).

b. Academic Editorial Positions

Editorial Board positions

2024 - Today – Editorial Board member, Journal of Fungi. (Link).

2022 - Today – Associate Editor Board member, *Frontiers in Fungal Biology*, Fungi-Plant Interactions. (Link).

2022 - 2024 – Editorial Board member, *Agrochemicals*. (Link).

Academic Editing of Special Issue/Topic

2025 - Today – Academic Editor, Research Topic: "Insights into the Molecular Dynamics of Stress Physiology in Allium Crops." *Frontiers in Plant Science* (Link).

2025 - Today – Academic Editor, Special Issue: "Plant Fungal Diseases and Crop Protection 2nd Edition," *Journal of Fungi*. (Link).

2024 – Academic Editor, Special Issue: "Plant Fungal Diseases and Crop Protection," *Journal of Fungi*. (Link).

2023 - 2024 – Academic Editor, Special Issue: "Roles of Soil and Roots Biotic and Abiotic Conditions in Fungal-Plant Interactions and Plant Performance 3.0," *Journal of Fungi*. (Link).

2023 - 2025 – Academic Editor, Research Topic: "Plant-friendly microorganisms as a bio-barrier against pathogens," *Frontiers in Fungal Biology*, Fungi-Plant Interactions. (Link).

2021 - 2023 – Academic Editor, Special Issue: "Roles of Soil and Roots Biotic and Abiotic Conditions in Fungal-Plant Interactions and Plant Performance 2.0," *Journal of Fungi*. (Link).

2021 - 2022 – Academic Editor, Special Issue: "Interactions between Microorganisms in Plant Diseases," *Agriculture*. (Link).

2021 - 2022 – Academic Editor, Special Issue: "Roles of Soil and Roots Biotic and Abiotic Conditions in Fungal-Plant Interactions and Plant Performance," *Journal of Fungi*. (Link).

c. Reviewing scientific papers

Most reviews can be found on the Web of Science at:

https://www.webofscience.com/wos/author/record/F-3978-2014

10/01/2025 – Can et al., First report of *Magnaporthiopsis maydis* from maize in Republic of Türkiye. *Plant Disease* (2nd round).

23/10/2024 – Efficacy of plant resistance elicitor salicylic acid against *Magnaporthiopsis maydis* and its exogenous application for controlling late wilt disease of maize. *Cereal Research Communications*.

17/09/2024 – Matos et al., Challenges in Maize Production: A Review on Late Wilt Disease Control Strategies. Fungal Biology Reviews (2nd round).

06/06/2024 – Matos et al., Challenges in Maize Production: A Review on Late Wilt Disease Control Strategies. Fungal Biology Reviews (1st round).

16/12/2023 - Kälin et al., Transcriptomic analysis identifies candidate genes for aphanomyces root rot disease resistance in pea. BMC Plant Biology.

21/04/2023 – Can et al., First report of *Magnaporthiopsis maydis* from maize in Republic of Türkiye. *Plant Disease*.

16/01/2023 - Dimkić et al., Pathobiome and Microbial Community Shifts Associated with Different Crops. book entitled "Plant Pathogen Interaction" (P. Verma, S. Mishra, V. Srivastava, S. Mehrotra ; Eds), Springer.

24/11/2021 – Cohen et al. Charcoal rot (*Macrophomina phaseolina*) across melon diversity: evaluating the interaction between the pathogen, plant age and environmental conditions as a step towards breeding for resistance. *European Journal of Plant Pathology* 163.3 (2022): 601-613.

30/12/2020 – Massi, Federico, et al. Fungicide resistance evolution and detection in plant pathogens: *Plasmopara viticola* as a case study. *Microorganisms* **9.1** (2021): 119.

11/12/2020 – Ons, Lena, et al. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. *Microorganisms* 8.12 (2020): 1930.

03/09/2020 – Cavalcante, Allinny Luzia Alves, et al. Characterization of five new Monosporascus species: adaptation to environmental factors, pathogenicity to cucurbits and sensitivity to fungicides. *Journal of Fungi* 6.3 (2020): 169.

06/08/2020 – Ramírez-Tejero, Jorge A., et al. *Verticillium* wilt resistant and susceptible olive cultivars express a very different basal set of genes in roots. *Plants*, published in *BMC genomics* 22.1 (2021): 1-16.

12/06/2020 – Le, Duy P., et al. Co-occurrence of defoliating and non-defoliating pathotypes of *Verticillium dahliae* in field-grown cotton plants in New South Wales, Australia. *Plants* **9.6** (2020): 750.

13/05/2020 – Bhaskar Rao, Talluri, et al. A comprehensive gene expression profile of pectin degradation enzymes reveals the molecular events during cell wall degradation and pathogenesis of rice sheath blight pathogen Rhizoctonia solani AG1-IA. *Journal of Fungi* 6.2 (2020): 71.

20/04/2019 – Cook J.C. *Magnaporthiopsis maydis* (Samra, Sabet & Hing.) Klaubauf, Lebrun & Crous, Late wilt of Corn. United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ); Washington, DC, USA: 2019. New Pest Response Guidelines.

31/03/2019 – Ortiz-Bustos, Carmen M., et al. Environmental and irrigation conditions can mask the effect of *Magnaporthiopsis maydis* on growth and productivity of maize. *Plant Pathology* 68.8 (2019): 1555-1564.

10/03/2018 – Tej, R., et al. Inhibitory effect of *Lycium europaeum* extracts on phytopathogenic soil-borne fungi and the reduction of late wilt in maize. *European Journal of Plant Pathology* **152** (2018): 249-265.

13/02/2015 – Wang, Meng, et al. Biological control of southern corn leaf blight by *Trichoderma atroviride* SG3403. *Biocontrol Science and Technology* 25.10 (2015): 1133-1146.

29/09/2014 – Patel, Samra B. K., et al. *Erysiphe pisi* signal perception in pea is regulated through $G\alpha$ subunit of the heterotrimeric G protein and mediated by jasmonic acid and hydrogen peroxide, *Phytopathology*.

05/04/2014 – Lipoxygenase related defense response induced by *Trichoderma viride* against Aspergillus niger Van Tieghem, inciting collar rot in Groundnut (*Arachis hypogaea* L.), *Phytoparasitica*.

d. Membership in scientific societies

2008 - Today (with a few years of non-membership in between) – Israel Phytopathology Society (IPS).

1999 - Today (with a few years of non-membership in between) – Israel Society for Microbiology (ISM).

2010, 2019, 2023 – Israel Scientific Society of Field Crops and Vegetables

2005, 2011, 2023 – Israel Societies for Experimental Biology - FISEB (ILANIT)

2022 – Israel Scientific Society of Science and the Environment

2019 – American Society for Microbiology (ASM).

 $\textbf{2012}-Mediterranean\ Phytopathological\ Union$

6. Participation in Scholarly Conferences

a. Active Participation

International Conferences

Date	Name of Conference	Place of Conference	The subject of the Lecture/Discussion	Role
2025 2-5/3	European Conference on Fungal Genetics (ECFG17)	Dublin Irland	Impact of <i>Fusarium</i> Species Composition and Incidence on Onion Basal Rot in Northeastern Israel The maize late wilt pathogen <i>Magnaporthiopsis maydis</i> interspecies interactions, and its combined influence with <i>Fusarium</i> <i>verticillioides</i>	Lecturer and Posters presentation
2025 9-11/1	The 4th World Biological Science and Technology	Macau China Hybrid	Integrated management of the Cotton Charcoal Rot Disease using biological and chemical inducers	Invited lecturer and Session chair
2024 17-19/6	Green Chemistry Conferences 2024	Paris, France Hybrid	6-Pentyl-α-Pyrone, a Strong Antifungal Compound, against the Maize Late Wilt Pathogen, <i>Magnaporthiopsis maydis</i>	Invited lecturer

2024 3-5/6	3rd International Meet on Food Science and Technology FOODTEC HMEET2024	Frankfurt, Germany Hybrid	Integrated Biological and Chemical Control against the Maize Late Wilt Agent <i>Magnaporthiopsis maydis</i>	Invited lecturer
2024 23/5	COST 4th General Assembly and conference	Management Committee Meeting, Zagreb, Croatia	Towards Zero Pesticides Agriculture Network - Management Committee meeting	Management committee member
2023	COST 2nd General Assembly and conference	Uppsala, Sweeden	Towards Zero Pesticides Agriculture Network - Management Committee meeting	Management committee member
2023	Crop protection futures in agriculture	Uppsala, Sweeden	Crop protection futures in agriculture	Participant
8/2023	The 12 th International Congress of Plant Pathology (ICPP)	Lyon, France	<i>Trichoderma asperellum</i> secreted 6-pentyl-alpha-pyrone protects maize plants from the late wilt pathogen, <i>Magnaporthiopsis</i> <i>maydis</i> .	Lecturer
			The maize late wilt fungus <i>Magnaporthiopsis maydis</i> in Israel consists of aggressive strains that can specialize in disrupting growth or plant health.	Poster presentation
3/2023	The 16 th European Conference on Fungal Genetics (ECFG16)	Innsbruck, Austria	<i>Trichoderma</i> workshop and the general assembly.	Participant
2023	The 10 th Israel Societies for Experimenta l Biology - FISEB (ILANIT)	Eilat, Israel	<i>Trichoderma asperellum</i> secreted 6-pentyl-α-pyrone protects maize plants from the late wilt pathogen, <i>Magnaporthiopsis maydis.</i>	Poster presentation

2022	The 2 nd International Conference on Plant Sciences and Biology 12th Annual	Webinar Athens,	A green solution to maize late wilt disease. The secret life of the maize	Invited lecturer Invited
	International Symposium on Agricultural Research	Greece	pathogen, Harpophora maydis	lecturer
2018	1 st Annual Congress on Plant Science and Biosecurity (ACPB)	Valencia, Spain	Chemical protection using drip irrigation and seed coating against maize late wilt disease in the field	Invited lecturer
2018	The 14 th European Conference on Fungal Genetics (ECFG14)	Haifa, Israel	<i>Trichoderma</i> workshop Chemical protection using drip irrigation and seed coating against maize late wilt disease in the field	workshop co-chair Poster presentation
2018	The 11th International Congress of Plant Pathology (ICPP)	Boston, USA	Uncovering host range for the maize pathogen <i>Harpophora</i> <i>maydis</i>	Poster presentation
2017	The 10 th Annual International Symposium on Agricultural Research	Athens, Greece	A qPCR-based method for evaluating the efficiency of seed coating against maize Late wilt disease	Invited lecturer and Session chair
2011	Israel Societies for Experimenta l Biology - FISEB (ILANIT)	Eilat, Israel	Diagnosis and control of maize late wilt disease	Poster presentation
2005	Israel Societies for Experimenta l Biology - FISEB (ILANIT)	Eilat, Israel	G protein and MAPK pathways in the maize pathogen <i>Cochliobolus</i> <i>heterostrophus</i> : signaling for gene expression, development and virulence	Lecturer

2005	The US- Israel Binational Agricultural Research and Developmen t Fund (BARD) workshop	California, USA	Signal Transduction and Hydrophobin Gene Expression in the Maize Pathogen <i>Cochliobolus</i> <i>heterostrophus</i>	Poster presentation
2005	XXIII Fungal Genetics Conference	California, USA	Signal Transduction and Hydrophobin Gene Expression in the Maize Pathogen <i>Cochliobolus</i> <i>heterostrophus</i>	Poster presentation

Israel Conferences

Date	Name of Conference	Place of Conference	Subject of Lecture/Discussion	Role
2025	the 44th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Intra-species Interaction and Relationship with <i>Fusarium</i> <i>verticillioides</i> in the Maize Wilt Late Disease Agent, <i>Magnaporthiopsis maydis</i> Development of an Azoxystrobin Slow-Release Clay Carrier Against the Maize Late Wilt Disease Agent, <i>Magnaporthiopsis maydis</i>	Lecturer and Poster presentation
2024	the 43 rd Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	<i>Fusarium</i> species composition in agricultural fields in northeastern Israel and its effect on the onion basal rot disease	Poster presentation
2023	The 25 th Tel-Hai Research Conference	Tel-Hai, Israel	Discovery of a new antifungal compound, 6-Pentyl- α -Pyrone, against the corn late wilt pathogen.	The session chair and Lecturer
2023	Israel Scientific Society of Field Crops and Vegetables annual seminar	Rehovot, Israel	Interactions between <i>Magnaporthiopsis</i> <i>maydis</i> and <i>Macrophomina</i> <i>phaseolina</i> , the causes of wilt diseases in maize and cotton.	Invited Lecturer
2022	The 50 th Israel Annual Conference on Science and the Environment	Tel-Aviv, Israel	Pathogenic interactions between <i>Macrophomina phaseolina</i> and <i>Magnaporthiopsis maydis</i> in mutually infected cotton sprouts.	Poster presentation

2022	The 24 th Tel-Hai Research Conference	Tel-Hai, Israel	Assessment of susceptibility of maize varieties to late wilt disease caused by <i>Magnaporthiopsis maydis</i> using remote sensing tools	The session chair and Lecturer
2022	the 42 nd Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Isolation, Identification, and Control of <i>Fusarium</i> spp., the Causal Agents of Onion Basal Rot in Northeastern Israel	Lecturer
2022	Israel Society for Microbiology (ISM) annual meeting	Be'er Sheva, Israel	A green solution to maize late wilt disease	Poster presentation
2022	Functional Mycology Conference	Tel-Hai, Israel	Fungi and the Environment Session	Session chair
2021	Agricultural Science Conference in Israel	Ramat-Gan, Israel	A green solution to maize late wilt disease	Lecturer
2020	The 22 th Tel-Hai Research Conference	Tel-Hai, Israel	Study of the interactions between <i>Macrophomina</i> <i>phaseolina</i> and <i>Magnaporthiopsis maydis</i> , as pathogens in cotton and corn	Lecturer
2020	Shamir Research Institute, Conference on land reclamation and conservation	Katzrin, Israel	The interaction between <i>Macrophomina phaseolina</i> and <i>Harpophora maydis</i> as pathogens in corn and cotton	Lecturer
2019	The 21 st Tel-Hai Research Conference	Tel-Hai, Israel	The interaction between <i>Macrophomina phaseolina</i> and <i>Harpophora maydis</i> as pathogens in corn and cotton	The session chair and Lecturer
2019	The 40 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	A new host range for the maize pathogen <i>Harpophora maydis</i>	Lecturer
2019	The 10 th Annual Conference of Excellence in Education, Israel Ministry of Education	Online meeting	Session - The Courage to be Equal	Session chair

2019	Israel Scientific Society of Field Crops and Vegetables, An annual seminar	Rehovot, Israel	Combining pesticides to prevent late wilt disease in corn in the field	Lecturer
2018	The 20 th Tel-Hai Research Conference	Tel-Hai, Israel	Seed coating and drip protection against <i>Harpophora maydis</i> in the field	The session chair and Lecturer
2018	The 39 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Seed coating and drip protection against <i>Harpophora maydis</i> in the field	Lecturer
2017	The 38 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	A qPCR-based method for detecting and monitoring <i>Harpophora maydis</i> inside the host tissues	Lecturer
2017	The 19th Tel-Hai Research Conference	Tel-Hai, Israel	A qPCR-based method for detection and monitoring <i>Harpophora maydis</i> inside the host tissues	Lecturer
2017	The 9 th Conference of Excellence in Education	Ramat Gan, Israel	The Division for Gifted and Outstanding Students	Session chair
2016	The 18 th Tel-Hai Research Conference	Tel-Hai, Israel	Plant growth hormones suppress the development of <i>Harpophora</i> <i>maydis</i> , the cause of late wilt in maize	Lecturer
2016	Israel Molecular Mycology Meeting (MMM)	Haifa, Israel	A qPCR-based method for detection and monitoring <i>Harpophora maydis</i> inside the host tissues	Lecturer
2016	The 37 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Plant hormones regulate the development of <i>Harpophora maydis</i> , the cause of late wilt in maize	Lecturer
2016	Israel Plant ecology	Tel-Hai, Israel	Ambient stresses regulate the development of the maize late wilt-causing agent, <i>Harpophora</i> <i>maydis</i>	Lecturer
2015	The 17 th Tel-Hai Research Conference	Tel-Hai, Israel	<i>Cochliobolus heterostrophus</i> G- protein and MAPK signaling pathways control the fludioxonil fungicide activity and resistance	Lecturer

2015	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	The agent of late wilt of corn, <i>Harpophora maydis,</i> pathogenesis and control	Poster presentation
2015	the 36 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	<i>Cochliobolus heterostrophus</i> G- protein and MAPK signaling pathways control the fludioxonil fungicide activity and resistance	Lecturer
2015	The 8 th Conference of Excellence in Education	Ramat-Gan, Israel	Enzymatic hydrolysis of cotton fabrics cuticle components	Invited Lecturer
2014	The 16 th Tel-Hai Research Conference	Tel-Hai, Israel	The late wilt causal agent, <i>Harpophora maydis</i> , pathogenesis and control	Lecturer
2013	The 15 th Tel-Hai Research Conference	Tel-Hai, Israel	The agent of late wilt of corn, <i>Harpophora maydis,</i> pathogenesis and control	Lecturer
2013	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	The agent of late wilt of corn, <i>Harpophora maydis</i> , pathogenesis and control	Poster presentation
2011	The 13 th Tel-Hai Research Conference	Tel-Hai, Israel	Late wilt of maize: Characterization of the pathogenesis and identifying means of control	Lecturer
2010	The 31 st Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Late wilt of maize: Characterization of the pathogenesis and identifying means of control	Lecturer
2010	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Late wilt of maize: characterization of the pathogenesis and identifying means of control	Poster presentation
2010	Israel Scientific Society of field crops and vegetables annual seminar	Rehovot, Israel	The late wilt causal agent, <i>Harpophora maydis</i> , pathogenesis and control	Lecturer
2009	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Plants' hormone effect on the development of the maize late wilt agent, <i>Harpophora maydis</i>	Poster presentation

2009	The 30 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Plants' hormone effect on the development of the maize late wilt agent, <i>Harpophora maydis</i>	Lecturer
2008	The 10 th Tel-Hai Research Conference	Tel-Hai, Israel	Development of molecular and biological tests for detecting and characterizing late wilt in corn	Lecturer
2008	The 29 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Hydrophobins genes expression in the maize pathogen <i>Cochliobolus heterostrophus</i>	Lecturer
2005	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Enzymatic hydrolysis of cotton fibers	Poster presentation
2004	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Enzymatic hydrolysis of cotton fibers	Poster presentation
2001	Israel Society for Microbiology (ISM), annual meeting	Tel-Aviv, Israel	Phytopathogenic Enzymes and Their Potential Use in Scouring of Natural Fibers	Poster presentation
2000	Israel Society for Microbiology (ISM), annual meeting	Tel-Aviv, Israel	Enzymatic hydrolysis of cotton fiber cuticle in textile fabrics	Poster presentation
1999	Israel Society for Microbiology (ISM), annual meeting	Tel-Aviv, Israel	Enzymatic hydrolysis of cotton fiber cuticle in textile fabrics	Poster presentation
1999	Israel Society for Microbiology (ISM), annual meeting	Haifa, Israel	Enzymatic hydrolysis of cotton fiber cuticle in textile fabrics	Lecturer

b. Organization of Conferences or Sessions

Date	Name of	Place of	Subject of	Role
	Conference	Conference	Conference	

2023	The 25 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Multidisciplinary Studies in Applied Microbiology	Session Organizing Committee head
2022	The 24 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee head
2022	Functional Mycology Conference	Tel-Hai, Israel	Functional Mycology	Conference Organizing Committee
2020	The 22 nd Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2019	The 21 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2018	The 20 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2017	The 19 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2016	The 18 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2015	The 17 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2014	The 16 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2013	The 15 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head

2011	The 13 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session Organizing Committee co- head
2010	The US-Israel Binational Agricultural Research and Development Fund (BARD)	Haifa, Israel	<i>Trichoderma</i> Workshop	Organizing Committee member

7. Invited Lectures\ Colloquium Talks

Date	Place of Lecture	Name of Forum	Presentation/Comments
2025	The Ohalo Manor Hotel, Kinneret, Israel	The Israel Ministry of Agriculture Plant Diseases Course for Growers	Integrated management of the Maize Late Wilt and Cotton Charcoal Rot diseases, using biological and chemical inducers
2023	Hazera Seeds, Brurim Farm, Israel	Hazera Seeds Seminar	Isolation, characterization, and control of <i>Fusarium</i> spp., the cause of onion (Allium cepa) Basal rot in northeast Israel
2023	Southern farm hall, Misamia, Israel	Macrophomina Seminar	The charcoal rot disease in cotton, challenges, and possible solutions
2018	Spanish National Research Council, Institute for Sustainable Agriculture (IAS), Cordoba, Spain	Institutional seminar	Economical and effective treatment against maize late wilt disease in the field

8. <u>Research Grants</u>

a. Grants Awarded

Publications related to research by referral to the number in the list of publications.

Role in	Co-Researcher	Торіс	Funded by/	Year
Research			Amount	

Co-PI	Meri Dafni-Yalin (PI) Roni gafni	Examining the effectiveness of chemical and biological treatments for controlling the fungus <i>Athelia rolfsii</i> (Southern blight) and the earwig insect	Israel's Peanut Production and Marketing Council.	2025
	Onn Rabinovitz Liora Shaltiel- Harpaz	Euborellia Annulipis in peanuts.	63,750 NIS	
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an integrated managing control for charcoal rot disease in cotton: a clay- based formula for the slow release of Azoxystrobin in the sowing strip and biological seed dressing.	Israel Council for Cotton Production and Marketing Ltd. 60,000 NIS	2025
PI	Dr. Onn Rabinovitz	Biological enrichment of cover plants, pre-growing cotton with minimum tillage, for protection against the charcoal rot disease (Macrophomina)	RegenUP, Israel 16,000 NIS	2025
PI	Dr. Onn Rabinovitz	Monitoring disease symptoms and conducting molecular surveillance of charcoal rot infestations in cotton plots following the pre-growth of cover plants and implementation of minimum tillage	Adama Haya biodynamics (Living Soil) Israel 25,000 NIS	2025
PI	Dr. Onn Rabinovitz Mr. Yoav Golan	Development of an integrated managing control for late wilt disease in corn: a clay-based formula for the slow release of Azoxystrobin in the sowing strip and biological seed dressing.	Israel's Organization of Extensive Cultivation. 29,000 NIS	2025
PI	Dr. Onn Rabinovitz	Monitoring disease symptoms and conducting molecular surveillance of charcoal rot infestations in cotton plots following the pre-growth of cover plants and implementation of minimum tillage	Adama Haya biodynamics (Living Soil) Israel 25,000 NIS	2024
PI	Mr. Elyahu Margalit	Development of an Eco- Friendly Interface Using <i>Trichoderma</i> spp. to Control Onion Basal Rot Disease	Israel Plant Council, Ministry of Agriculture 25,000 NIS	2024- 2025

PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	Migal – Galilee Research Institute 100,000 NIS	2024
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an eco-friendly pesticide interface, based on <i>Trichoderma</i> fungi, against the cause of cotton charcoal rot Publication: 6	Israel Council for Cotton Production and Marketing Ltd. 70,000 NIS	2024
PI	Mr. Elyahu Margalit	Chemical control of <i>Fusarium</i> spp., the causal agents of onion (<i>Allium cepa</i>) basal rot Publications: 5, 8, 12	Israel Plant Council, Ministry of Agriculture 28,000 NIS	2023- 2024
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an eco-friendly pesticide interface, based on <i>Trichoderma</i> fungi, against the cause of cotton charcoal rot Publication: 7	Israel Council for Cotton Production and Marketing Ltd. 50,000 NIS	2023
PI	-	Support in funding equipment for research purposes	Tel-Hai College, Israel, Science Relations Foundation 8,000 NIS	2023
PI	Dr. Onn Rabinovitz Mr. Yoav Golan	Biological enrichment of fodder corn seeds against the late wilt disease Publication: 4	Israel's Organization of Extensive Cultivation. 20,000 NIS	2023
PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	Migal – Galilee Research Institute 100,000 NIS	2023

PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	ICA Israel (Jewish Colonization Association) 25,000 \$	2023
PI	Dr. Shaul Naschitz Prof. Soliman Khatib Prof. Dov Prusky	The formation process of <i>Alternaria</i> black spot disease in stored persimmons and its prevention through treatments with antioxidants	Tel-Hai College, Israel, Science Relations Foundation 20,000 NIS	2023
PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	Tel-Hai College, Israel, Science Relations Foundation 20,000 NIS	2022
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an eco-friendly pesticide interface, based on <i>Trichoderma</i> fungi, against the cause of cotton charcoal rot Publication: 10	Israel Council for Cotton Production and Marketing Ltd. 55,000 NIS	2022
Co-PI	Dr. Shaul Naschitz (PI)	Isolation and identification of apple fruits [,] fungal pathogens	Israel Plant Council, Fruit Branch, Ministry of Agriculture 7,000 NIS	2022
PI	Mr. Shaul Graph Mr. Elyahu Margalit	Isolation and Identification of <i>Fusarium</i> spp., the causal agents of onion (<i>Allium cepa</i>) basal rot in northeastern Israel Publication: 5	Israel Plant Council, Ministry of Agriculture 17,000 NIS	2022
PI	Dr. Onn Rabinovitz	Combined biological-chemical pesticide to prevent late wilt in corn Publications: 10, 18	Israel's Organization of extensive cultivation 20,000 NIS	2022

PI	Mr. Shaul Graph	Chemical control of <i>Fusarium</i>	Israel Plant	2021
		spp., the causal agents of onion	Council,	
	Mr. Elyahu	(Allium cepa) basal rot	Ministry of	
	Margalit	-	Agriculture	
		Publications: 8, 12, 25		
			18,000 NIS	
PI	Mr. Ran Yifa	Cultivars' resistance assay for	CTS Group	2021
	Dr. Assaf Chen	maize late wilt disease	14,000 NIS	
	DI. Assai Chen	Publication: 11, 18	14,000 1115	
DI				
PI	Prof. Soliman	Purification and identification	Migal –	2021
	Khatib	of <i>Trichoderma asperellum</i>	Galilee Research	
		secreted ingredients with		
		antifungal activity against <i>Magnaporthiopsis maydis</i> , the	Institute	
		maize late-wilt disease causal	40,000 NIS	
		agent	,	
		Publications: 14, 18, 20		
PI	Mr. Shaul Graph	Chemical control of Fusarium	Israel Plant	2020
		spp., the Causal Agents of	Council,	
	Mr. Elyahu	Onion (Allium cepa) Basal Rot	Ministry of	
	Margalit	Detting 12.25	Agriculture	
		Publication: 12, 25	10,500 NIS	
			10,500 1115	
PI	Dr. Hagai	Eco-friendly control against	Tel-Hai	
	Shemesh	corn late wilt by strengthening	College,	
	Dr. On a	the soil mycorrhizal networks	Israel, Science	
	Dr. Onn Rabinovitz	Dublications 15 10 10 21	Relations	
	Kabinovitz	Publications: 15, 18, 19, 21	Foundation	
			20,000 NIS	
PI		Biological control of	Israel Council	2020
		Macrophomina phaseolina, the	for Cotton	
		cotton charcoal rot disease	Production	
		causal agent	and Marketing	
			Ltd.	
		Publications: 9, 16	20,000 NIS	
PI	Prof. Soliman	Isolation and identification of	ICA – Migal	2020
	Khatib	active ingredient against	accelerator,	
		Magnaporthiopsis maydis, the	Israel	
		maize Late-wilt disease causal agent	100,000 NIS	
		Publications: 14, 18, 20		

Co-PI	Dr. Assaf Chen	Using remote sensing tools for	Israel Ministry	2019-
0011	(PI)	the early detection and	of Agriculture	2021
	v,	prevention of soil-borne	and Rural	
	Dr. Mery Dafny	diseases in field crops while	Development	
	Yelin	reducing amounts of pesticides	Chief Scientist	
		and increasing yield	450,000 NIS	
		Publications: 11, 15, 17, 19, 22	(partial share 82,000 NIS)	
PI	Mr. Shaul Graph	Isolation, characterization, and	Israel Plant	2019
		control of Fusarium spp. f. sp.	Council,	
		<i>cepae,</i> the cause of the onion	Ministry of	
		basal plate rot in northern Israel	Agriculture	
		Publications: 25, 30	8,000 NIS	
PI	Dr. Assaf Chen	The presence of <i>Harpophora</i>	Israel's	2019
	Dr. Onn	<i>maydis</i> in fodder maize, its	Organization	
	Rabinovitz	interaction with other	of extensive	
	Raomovitz	endophytes in the plant, and its effect on the nutritional value of	cultivation	
			25,000 NIS	
		the corn silage		
		Publications: 17, 18, 19, 23		
PI	Dr. Roni Cohen	Interactions	Israel Council	2019
		between Magnaporthiopsis	for Cotton	
		maydis and Macrophomina	Production	
		phaseolina, the Causes of Wilt	and Marketing	
		Diseases in Maize and Cotton	Ltd.	
		Publications: 16, 18, 19, 31	15,000 NIS	
PI	Mr. Shaul Graph	Isolation and Identification of	Israel Plant	2018
		Fusarium spp., the Causal	Council,	
		Agents of Onion (<i>Allium cepa</i>)	Ministry of	
		Basal Rot in Northeastern Israel	Agriculture	
		Publication: 30	41,000 NIS	
Co-PI	Dr. Haim Reuveni	Characterization of the profile	Migal –	2018
	(PI)	of volatiles from the leaves and	Galilee	
	Dr. Colimar	flowers of the cannabis plant in	Research	
	Dr. Soliman Khatib	response to environmental	Institute	
		stress	90,000 NIS	
	Prof. Jacob Vaya			
Co-PI	Dr. Haim Reuveni	Biological control of pests and	Migal –	2018
	(PI)	diseases in cannabis	Galilee	
	Dr. Chen Katz		Research	
	DI. UIUI Natz		Institute	
			90,000 NIS	

PI		Biological control against <i>Harpophora maydis</i> , the maize Late-wilt disease causal agent Publications: 18, 19, 20, 22, 24	Migal – Galilee Research Institute 140,000 NIS	2018
PI	Dr. Roni Cohen Mr. Shaul Graph	Interactions between <i>Magnaporthiopsis</i> <i>maydis</i> and <i>Macrophomina</i> <i>phaseolina</i> , the Causes of Wilt Diseases in Maize and Cotton Publications: 16, 18, 19, 31	Israel Council for Cotton Production and Marketing Ltd. 17,000 NIS	2018
PI	Dr. Moshe Meron Dr. Assaf Chen Mr. Shaul Graph	Thermal detection and chemical control of the maize late wilt causing agent, <i>Harpophora</i> <i>maydis</i> Publications: 18, 19, 29	Israel's Organization of extensive cultivation 25,000 NIS	2018
PI	Dr. Onn Rabinovitz Mr. Shaul Graph	Improved chemical control against the cause of late wilt in corn Publications: 18,19, 29, 33	Netafim Ltd. Israel 8,000 NIS	2017
PI		Biological control against <i>Harpophora maydis</i> , the maize Late-wilt disease causal agent Publications: 17, 18, 22, 24	Migal – Galilee Research Institute 45,000 NIS	2017
PI	Dr. Mery Dafny Yelin Mr. Shaul Graph	Protection and control against <i>Harpophora maydis</i> , the causing agent of maize late wilt Publications: 10, 18, 19, 27, 29, 32, 33, 34, 35	Israel Ministry of Agriculture and Rural Development Chief Scientist 420,000 NIS	2015- 2017
PI		Ambient Stresses influence on the development of the maize late wilt Causing agent, <i>Harpophora maydis</i> Publications: 19, 33, 40	Israel Northern R&D 20,000 NIS	2014

PI	Mr. Shaul Graph	Involvement of <i>Harpophora</i> <i>maydis</i> in sweet corn wilt disease: characterizing the disease course and developing ways to eradicate it Publications: 18, 19, 33, 34, 35, 42, 45, 49	Israel Northern R&D 40,000 NIS	2013
PI	Mr. Shaul Graph	<i>Harpophora maydis</i> wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 18, 19, 33, 34, 35, 42, 45, 49	The Jewish National Fund (Keren Kayemeth LeIsrael) 25,000 NIS	2012
PI	Dr. Tsafrir Weinberg Mr. Shaul Graph Dr. Onn Rabinovitz	Eradicating the late wilt disease in corn Publications: 18, 19, 33, 34, 35, 42, 45, 49	Israel Plant Council, Ministry of Agriculture 25,000 NIS	2011
PI	Mr. Shaul Graph	<i>Harpophora maydis</i> wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 18, 19, 33, 34, 35, 42, 45, 49	Israel Plant Council, Ministry of Agriculture 15,000 NIS	2011
PI	Dr. Efraim Zuckerman Mr. Shaul Graph	<i>Harpophora maydis</i> wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 18, 19, 33, 34, 35, 42, 45, 49	Israel Plant Council, Ministry of Agriculture 35,000 NIS	2010
PI	Prof. Benjamin A Horwitz Dr. Doron Goldberg Dr. Efraim Zuckerman Mr. Shaul Graph	<i>Harpophora maydis</i> wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 18, 19, 33, 34, 35, 42, 45, 49	Israel Plant Council, Ministry of Agriculture 35,000 NIS	2009

PI	Prof. Benjamin A Horwitz Dr. Doron Goldberg, Mr. Shaul Graph	Involvement of the fungus <i>Harpophora maydis</i> in causing late wilt disease in sweet corn: characterizing the course of the disease and finding ways to control it Publications: 18, 19, 33, 34, 35, 42, 45, 49	The Jewish National Fund (Keren Kayemeth LeIsrael) 50,000 NIS	2008
PI		Diagnosis and control of maize late wilt disease Publications: 18, 19, 33, 34, 35, 42, 45, 49	Israel Northern R&D 25,000 NIS	2007
PI		 (1) Understanding fungicide activity and resistance regulation through fungal signaling pathways. (2) Involvement of <i>Harpophora</i> <i>maydis</i> in causing late wilt disease in corn – diagnosis and control Publications: 18, 19, 33, 34, 35, 42, 45, 49 	Ohalo academic college 27,000 NIS	2206- 2012

b. <u>Submission of Research Proposals – Pending</u>

Role in Research	Co- Researchers	Торіс	Funded by	Year
PI	Dr.Sanaa Musa	Biocontrol of Wilt Diseases in Maize and Cotton through Fungal Extrolites	ICA 40,000 \$	2025
Collaborating	Dr. Tamar Dayan, Dr. Yael Teff Seker	Regenerative economy & Agri- biotechnology in cotton production	BARD 600,000 \$	2025
PI	Dr. Ofir Benjamin	Onion Seed Microbiome Endophytic Enrichment for Basal Rot Protection	Israel Plant Council, Ministry of Agriculture 29,900 NIS	2025
PI	Ms. Netta Mor	Examining the use of <i>Trichoderma</i> to control <i>Macrophomina</i> in strawberries	Israel Plant Council, Ministry of Agriculture	2025

Mr. Muhammad Abu Tuama	29,900 NIS	
Mr. Lidan Falah		

c.	Submission of Research Proposals – Not Funded (5 years)
•••	

Role in Research	Co- Researchers	Торіс	Funded by	Year	Score
Co-PI	Gold, Scott E (PI)	From fungal chemical crosstalk to biological control in corn	BARD	2024	3
PI	Dr. Onn Rabinovitz Dr. Assaf Chen Mr. Eyal Ben Simhon	Biological enrichment of cover plants, pre-growing cotton with minimum tillage, for protection against the charcoal rot disease (Macrophomina)	Israel Ministry of Agriculture and Rural Development Chief Scientist	2024	n.a.
Co-PI	Gold, Scott E (PI)	Chemical Crosstalk Controlling the Maize Seed Fungal Pathobiome	BARD	2023	4
PI	Dr. Onn Rabinovitz	Strengthening the corn seeds' microbiome to prevent late wilt diseases	ICA – Migal accelerator, Israel	2023	n.a.
PI	Prof. Giora Rytwo Dr. Onn Rabinovitz	Development of an Azoxystrobin slow-release carrier to control the maize late wilt causal agent	Israel Ministry of Agriculture and Rural Development Chief Scientist	2023	n.a.

PI	Dr. Shaul Naschitz Prof. Soliman Khatib Prof. Dov Prusky	The formation process of <i>Alternaria</i> black spot disease in stored persimmons and its prevention through treatments with antioxidants	Israel Ministry of Agriculture and Rural Development Chief Scientist	2023	n.a.
Co-PI	Dr. Elhanan Tzipilevich (PI)	Development of a Bacillus species-based biological control interface against corn diseases	Israel Ministry of Agriculture and Rural Development Chief Scientist	2023	n.a.
PI	Dr. Onn Rabinovitz Mr. Lior Avraham	Combined biological- chemical pest control for the prevention of late wilt disease in corn	Israel Plant Council, Ministry of Agriculture	2023	n.a.
PI	Prof. Giora Rytwo Dr. Onn Rabinovitz	Development of an Azoxystrobin slow-release carrier to control the maize late-wilt causal agent	Israel Ministry of Agriculture and Rural Development Chief Scientist	2022	n.a.
PI	Dr. Shaul Naschitz Prof. Soliman Khatib Prof. Dov Prusky	The formation process of <i>Alternaria</i> black spot disease in stored persimmons and its prevention through treatments with antioxidants	Israel Ministry of Agriculture and Rural Development Chief Scientist	2022	n.a.
PI	Prof. Giora Rytwo Dr. Onn Rabinovitz	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt and cotton charcoal rot diseases	Israel Ministry of Science and Technology	2022	n.a.
PI	Dr. Onn Rabinovitz	Combined biological- chemical pesticide to prevent late wilt in corn	Israel Plant Council, Ministry of Agriculture	2022	n.a.

PI	Prof. Soliman Khatib	Purification, identification, and the first application of <i>Trichoderma</i> sp. (P1) secreted ingredients with antifungal activity against <i>Magnaporthiopsis maydis</i> , the maize late-wilt disease causal agent	Tomorrow's Crop Protection Challenge, ADAMA, and GrowingIL	2021	n.a.
PI	Dr. Onn Rabinovitz	Develop eco-friendly control interphase against the late wilt disease in corn by strengthening the soil mycorrhizal networks	Israel's Organization of extensive cultivation	2021	n.a.
PI	Dr. Onn Rabinovitz	Develop eco-friendly control interphase against the late wilt disease in corn by strengthening the soil mycorrhizal networks	Nekudat-Hen	2021	n.a.
PI	Dr. Onn Rabinovitz	Interactions between Magnaporthiopsis maydis and Fusarium spp., the causes of wilt and rot diseases in maize	Israel's Organization of extensive cultivation	2020	n.a.
PI	Dr. Onn Rabinovitz	Interactions between Magnaporthiopsis maydis and Fusarium spp., the causes of wilt and rot diseases in maize	Nekudat-Hen	2020	n.a.

9. Scholarships, Awards and Prizes

2015, 2018 - 2024 – Excellence in Research Acknowledgment. Tel-Hai College (Israel).

2016 – 2019, 2021 - 2022 – Staff member Excellency Acknowledgment. Tel-Hai College (Israel).

2021 – Certificate of appreciation for publishing the most articles in the Faculty of Science. Tel-Hai College (Israel). Accompanied by a financial grant of 3,000 NIS.

10. Teaching

a. Courses Taught in Recent Years

Year	Name of Course	Type of Course	Degree	Number of Students

2008 - Today	Experimental Design, Tel-Hai College (Israel)	Lecture + lab	B.Sc.	Ca. 80/year
2008 - Today	Biochemistry Lab, Tel-Hai College (Israel)	lab	B.Sc.	Ca. 90/year
2008 - Today	Practice in Computational Biochemistry, Tel- Hai College (Israel)	Exercise	B.Sc.	Ca. 80/year
2013 - 2017	Scientific Excursions, Ohalo College (Israel)	Field study	B.Ed.	Ca. 40/year
2012- 2017	Botany, Ohalo College (Israel)	Lecture + lab	B.Ed.	Ca. 40/year
2012- 2016	Molecular Biology, Ohalo College (Israel)	Lecture + lab	B.Ed.	Ca. 40/year
2012- 2016	Evolution, Ohalo College (Israel)	Lecture	B.Ed.	Ca. 40/year
2001- 2017	Plant Physiology, Ohalo College (Israel)	Lecture + lab	B.Ed.	Ca. 40/year
2001- 2017	Life of Plants, Ohalo College (Israel)	Lecture + lab	B.Ed.	Ca. 40/year

b. Supervision of Graduate Students

Publications related to research by referral to number in the list of publications

Name of Student	Title of Thesis	Degree	Date of Completion / in Progress	Students' Achievements
Dr. Ofra Dahar	Involvement of laccases in the maize pathogen <i>Harpophora maydis</i> - host interactions	Post-Dr.	2018	Publication: 28

Name of Student	Title of Thesis	Degree	Date of Completion / In Progress	Co- supervisor	Students' Achievements
Sahed Ganaim	Onion Seed Microbiome: Pathogen Dynamics and Endophyte Enrichment for Disease Control.	M.Sc.	In progress		
Rima Ganaim	Development of a <i>Trichoderma</i> -Based Control and Electronic Nose Method for Identifying and Analyzing Onion Basal Rot Disease.	M.Sc.	In progress		
Eden Atdegi	The Microflora of Maize and Cotton Grains as a Biological Barrier against Israel's corn late wilt and cotton charcoal rot diseases	M.Sc.	In progress		
Ariel Hadad	Developing an Azoxystrobin slow- release clay carrier for eco-friendly control of corn late wilt and cotton charcoal rot diseases	M.Sc.	In progress		
Asaf Gordani	Combined biological- chemical treatment for eco-friendly control of corn late wilt and cotton charcoal rot diseases in Israel	M.Sc.	2024		Publications: 4, 6, 7, 9, 10
Tamir Sonnenberg	Vines resistant mechanism towards foliage diseases: <i>Powdery mildew</i> and <i>Downy mildew</i>	M.Sc.	2024	Dr. Meir Shlisel, Dr. Mery Dafny Yelin, Dr. Tirtza Zahavi Tel-Hai College (Israel)	

Galia Shufman Marlen Bahouth	Intra-species interaction and inter- relation with <i>Fusarium</i> <i>verticillioides</i> in the maize pathogen <i>Magnaporthiopsis</i> <i>maydis</i> in causing the maize wilt diseases The maize late wilt disease agent, <i>Magnaporthiopsis</i> <i>maydis</i> , geographic distribution, and aggressiveness in Israel	M.Sc. final project, track without a thesis	2024		Publication: 2, 3, 13 Publication: 13
Ben Kalman	Involvement of <i>Fusarium oxysporum</i> f. sp. <i>cepae</i> in onion rot: Characterization of the disease cycle, diagnosis, and control	M.Sc.	2020	Prof. Rafael Perl-Treves Faculty of Life Sciences, Bar-Ilan University	Publications: 25, 30
Shlomit Dor	Inducing resistance and control against <i>Harpophora maydis</i> , the cause of the late wilt disease in maize	M.Sc.	2019	Dr. Doron Goldberg Tel-Hai College (Israel)	Publications: 17, 21, 23, 24, 27, 29, 31, 32, 33 Awarded by the Israel Phytopathology Society (IPS, 2019)
Daniel Movshowitz	Chemical protection against <i>Harpophora</i> <i>maydis</i> , the causing agent of maize late wilt	M.Sc.	2018	Dr. Doron Goldberg Tel-Hai College (Israel)	Publications: 33, 34, 35
Yuval Goldblat	Host physiology and environmental stress involved in the development and pathogenesis of <i>Harpophora maydis</i> and the application of seed dressing to control late wilt	M.Sc.	2015	Dr. Doron Goldberg Tel-Hai College (Israel)	Publications: 28, 34, 38, 40

Shani Cohen	Environmental conditions regulate the development of the maize late wilt-causal agent, <i>Harpophora</i> <i>maydis</i>	M.Sc. final project, track without a thesis	2014		
Gilad Cernica		M.Sc.	2012	Dr. Doron Goldberg Tel-Hai College (Israel)	Publication: 45
Ran Drori	Involvement of <i>Harpophora maydis</i> in wilt of sweet corn: Characterization of the disease cycle and development of protection and control <i>maydis</i> - host interactions	M.Sc.	2009	Dr. Maggie Levy The Robert H. Smith Faculty of Agricultural, Food and Environment al the Hebrew University of Jerusalem (Israel)	Publications: 38, 49 Awarded by the Israel Phytopathology Society (IPS, 2009)

11. Professional Experience

- 2022 Today Leading the graduates students' program at the Tel-Hai Center of Science and Knowledge for Gifted and Excellent Children at Tel-Hai Academic College, Israel Ministry of Education, Division for Gifted and Outstanding Students (Israel).
- 2014 2017 Head of the North Israel Group of Centers for Gifted and Talented Children, Israel Ministry of Education, Division for Gifted and Outstanding Students (Israel).
- 2008 2021 Director of the Tel-Hai Center of Science and Knowledge for Gifted and Excellent Children at Tel-Hai Academic College, Israel Ministry of Education, Division for Gifted and Outstanding Students (Israel).

PUBLICATIONS

A. Ph.D. Dissertation

G protein and MAPK pathways in the maize pathogen *Cochliobolus heterostrophus*: signaling for gene expression, development, and virulence. (2005) Technion Institute of Technology (Israel), under the supervision of Prof. Benjamin Horwitz. English, 172 pages. Publications: 36, 41, 43, 44, 46, 47, 48

B. Articles in Refereed Journals

Published

- Degani O. Plant Fungal Diseases and Crop Protection. *Journal of Fungi.* (2025); 11(4): 274. (Free full-text link).
 IF (4.2) b, five years-IF (4.5), Citations number d (1), Journal Rank and Quartile: JCR – Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 2. Shofman, G. and **Degani**, O. ^a Interspecies crosstalk between *Magnaporthiopsis maydis* and *Fusarium verticillioides* in mutually infected maize plants. *Scientific Reports* (2025), 15, 10089. (Free full-text link).

IF (3.8) ^b, five years-IF (4.3), Citations number ^d (0), Journal Rank and Quartile: JCR - Q1.

3. Shofman, G. and **Degani**, **O**. ^a Mixed fungal strains challenge host resistance: insights into *Magnaporthiopsis maydis* pathogenicity in maize. *Frontiers in Microbiology* (2025), 16, 1520237. (Free full-text link).

IF (4.0) ^b, five years-IF (n.a.), Citations number ^d (0), Journal Rank and Quartile: JCR - Q2 / CiteScore - Q2.

 Degani O.^a, Ayoub A., Dimant E., and Gordani A. Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent, *Magnaporthiopsis maydis*. *Frontiers in Fungal Biology* (2024), 5: 1436759. (Free full-text link).

IF (2.1) ^b, five years-IF (n.a.), Citations number ^d (1), Journal Rank and Quartile: JCR - Q3 / CiteScore - Q2.

 Degani O. ^a, Dimant E., and Margalit E. Impact of *Fusarium* species composition and incidence on onion basal rot in northeastern Israel. *Horticulturae* (2024), 10, 373. (Free full-text link).

IF (3.1)^b, five years-IF (3.1), Citations number ^d (1), Journal Rank and Quartile: JCR - Q1 (*Horticulture*) / CiteScore - Q2 (*Horticulture*), Q2 (*Plant Sciences*).

 Degani O.^a, Chen A., Dimant E., Gordani A., Malul T., Rabinovitz O. Integrated management of the cotton charcoal rot disease using biological agents and chemical pesticides. *Journal of Fungi* (2024), 10, 250. (Free fulltext link). IF (4.2) ^b, five years-IF (4.5), Citations number ^d (1), Journal Rank and Quartile: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).

Degani, O. ^a, Gordani, A., Dimant, E., Chen, A., and Rabinovitz, O. The cotton charcoal rot causal agent, *Macrophomina phaseolina*, biological and chemical control. *Frontiers in Plant Science* (2023) 14, 1272335. (Free full-text link).

IF (4.1) ^b, Citations number ^d (6), Journal Rank and Quartile: Q1 (Plant Sciences).

 Dimant, E., and Degani, O. ^a, Molecular Real-Time PCR monitoring of onion *Fusarium* basal rot chemical control. *Journal of Fungi* (2023), 9, 809 (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (9), Journal Rank and Quartile: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

 Degani, O. ^a, Becher P., and Gordani, A. Real-time PCR early detection of *Trichoderma* treatments efficiency against cotton charcoal rot disease. *Journal of Natural Pesticide Research* (2023), 4, 100027. (Free full-text link).

IF (n/a - new journal), CiteScore (2.3), Citations number ^d (13), Journal Rank and Quartile (n/a) - New Journal.

 Gordani, A., Hijazi, B., Dimant, E., and Degani, O. ^a. Integrated biological and chemical control against the maize late wilt agent *Magnaporthiopsis maydis*. Soil Systems (2023), 7(1), 1. (Free full-text link).

IF (2.9) ^b, five years-IF (3.3), Citations number ^d (10), Journal Rank and Quartile: JCR - Q2 (Soil Science) / CiteScore - Q1 (Earth-Surface Processes).

11. **Degani**, **O**. ^a, Yifa R., Chen, A., Gordani A., and Becher P. Cultivars resistance assay for maize late wilt disease. *Biology* (2022), 11(12), 1854. (Free full-text link).

IF (3.6) ^b, five years-IF (3.8), Citations number ^d (10), Journal Rank and Quartile: JCR - Q1 (Biology) / CiteScore - Q1 (General Agricultural and Biological Sciences).

 Degani, O. ^a, Elhanan D., Gordani, A., Graph S., and Margalit E. Prevention and control of *Fusarium* spp. *cepae*, the causal agent of onion (*Allium cepa*) basal rot. *Horticulturae* (2022), 8 (11), 1071. (Free full-text link). Editor's choice.

IF (3.1)^b, five years-IF (3.1), Citations number ^d (21), Journal Rank and Quartile: JCR - Q1 (*Horticulture*) / CiteScore - Q2 (*Horticulture*), Q2 (*Plant Sciences*).

13. Shofman, G., Bahouth, M. and **Degani**, **O**. ^a Aggressive strains of the late wilt fungus of corn exist in Israel in mixed populations and can specialize in

disrupting growth or plant health. *Fungal Biology* (**2022**), 126(11-12), 793-808. (Free full-text link)

IF (2.910) ^b, five years-IF (3.435), Citations number ^d (9), Journal Rank and Quartile: Q2 (Mycology).

 Degani, O. ^a and Gordani, A. New antifungal compound, 6-pentyl-αpyrone, against the maize late wilt pathogen, *Magnaporthiopsis maydis*. *Agronomy* (2022), 12 (10), 2339. (Free full-text link). Editor's <u>choice</u>.

IF (3.3) ^b, five years-IF (3.7), Citations number ^d (29), Journal Rank and Quartile: JCR - Q1 (Agronomy), Q1 (Plant Sciences) / CiteScore - Q1 (Agronomy and Crop Science).

 Degani, O. ^a, Gordani, A.; Becher, P., Chen, A. Rabinovitz, O. Crop rotation and minimal tillage selectively affect maize growth promotion under late wilt disease stress. *Journal of Fungi* (2022), 8(6): 586. (Free fulltext link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (14), Journal Rank and Quartile: JCR – Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

 Degani, O. ^a, Becher P., Gordani A. Pathogenic interactions between *Macrophomina phaseolina* and *Magnaporthiopsis maydis* in mutually infected cotton sprouts. *Agriculture* (2022), 12 (2), 255. (Free full-text link).

IF (3.3) ^b, five years-IF (3.5), Citations number ^d (18), Journal Rank and Quartile: JCR - Q1 (Agronomy) / CiteScore – Q1 (Plant Science), Q1 (Agronomy and Crop Science).

 Degani, O. ^a, Chen, A., Dor, S. Orlov-Levin, V., Jacob M., Shoshani G. and Rabinovitz O. Remote evaluation of maize cultivars susceptibility to late wilt disease caused by *Magnaporthiopsis maydis*. *Journal of Plant Pathology* (2022) 104, 509–525. (Free full-text link). Editor's choice.

IF (2.2) ^b, five years-IF (2.5), Citations number ^d (14), Journal Rank and Quartile: Q2 (Plant Science).

Degani, O. Control strategies to cope with late wilt of maize. *Pathogens* (2022), 11, 13. (Free full-text link).

IF (3.3) ^b, five years-IF (3.5), Citations number ^d (13), Journal Rank and Quartile: CR - Q2 (Microbiology) / CiteScore - Q2 (General Immunology and Microbiology).

19. **Degani, O.** A Review: late wilt of maize—the pathogen, the disease, current status and future perspective. *Journal of Fungi* (2021), 7 (11), 989. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number d (29), Journal Rank and Quartile: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

Degani, O. ^a, Khatib, S., Becher, P., Gordani, A., Harris, R. *Trichoderma asperellum* secreted 6-pentyl-α-pyrone to control *Magnaporthiopsis maydis*, the maize late wilt disease agent. *Biology* (2021), 10 (9), 897. (Free full-text link).

IF (3.6) ^b, five years-IF (3.8), Citations number ^d (36), Journal Rank and Quartile: JCR - Q1 (Biology) / CiteScore - Q1 (General Agricultural and Biological Sciences).

Degani, O. ^a, Gordani A., Becher P. and Dor, S. Crop cycle and soil cultivation role in the outbreak of late wilt disease of maize, caused by *Magnaporthiopsis maydis*. *Journal of Fungi* (2021), 7 (9), 706. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (12), Journal Rank and Quartile: JCR – Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

Degani, O. ^a, Rabinovitz O., Becher P., Gordani A., Chen A. *Trichoderma longibrachiatum* and *Trichoderma asperellum* confer growth promotion and protection against late wilt disease in the field. *Journal of Fungi* (2021), 7 (6), 444. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (44), Journal Rank and Quartile: JCR – Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

Degani, O. ^a, Regev, D., and Dor, S. The microflora of maize grains as a biological barrier against the late wilt causal agent, *Magnaporthiopsis maydis*. *Agronomy* (2021), 11 (5), 965. (Free full-text link). Editor's choice.

IF (3.3) ^b, five years-IF (3.7), Citations number ^d (31), Journal Rank and Quartile: JCR - Q1 (Agronomy), Q1 (Plant Sciences) / CiteScore - Q1 (Agronomy and Crop Science).

Degani, O. ^a and Dor S. *Trichoderma* biological control to protect sensitive maize hybrids against late wilt disease in the field. *Journal of Fungi* (2021), 7 (4), 315. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (74), Journal Rank and Quartile: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

Degani, O. ^a and Kalman, B. Assessment of commercial fungicides against onion (*Allium cepa*) basal rot disease caused by *Fusarium oxysporum* f. sp. *cepae* and *Fusarium acutatum. Journal of Fungi* (2021), 7 (3), 235. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (36), Journal Rank and Quartile: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

26. **Degani, O.** Synergism between cutinase and pectinase in the hydrolysis of cotton fibers' cuticle. *Catalysts* (2021), 11 (1), 84. (Free full-text link).

IF (3.8) ^b, five years-IF (3.9), Citations number ^d (19), Journal Rank and Quartile: JCR - Q2 (Chemistry, Physical) / CiteScore - Q1 (General Environmental Science).

 Degani, O. ^a, Regev, D., Dor, S., and, Rabinowitz, O. Soil bioassay for detecting *Magnaporthiopsis maydis* infestation using a hyper susceptible maize hybrid. *Journal of Fungi* (2020), 6 (3), 107. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (21), Journal Rank and Quartile: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

 Degani, O. ^a, Goldblat, Y. Potential role of laccases in the relationship of the maize late wilt causal agent, *Magnaporthiopsis maydis*, and its host. *Journal of Fungi* (2020), 6 (2), 63. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (9), Journal Rank and Quartile: JCR – Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

Degani, O. ^a, Dor, S., Chen, A., Orlov-Levin, V., Stolov-Yosef, A., Regev, D., Rabinovitz, O. Molecular tracking and remote sensing to evaluate new chemical treatments against the maize late wilt disease causal agent, *Magnaporthiopsis maydis. Journal of Fungi* (2020), 6 (2), 54. (Free full-text link).

IF (4.2) ^b, five years-IF (4.5), Citations number ^d (30), Journal Rank and Quartile: JCR – Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Sciences).

 Kalman, B., Abraham, D., Graph, S., Perl-Treves, R., Meller Harel, Y., Degani, O. ^a Isolation and identification of *Fusarium* spp., the causal agents of onion (*Allium cepa*) basal rot in northeastern Israel. *Biology* (2020), 9 (4), 69. (Free full-text link). Editor's choice.

IF (3.6) ^b, five years-IF (3.8), Citations number ^d (101), Journal Rank and Quartile: JCR - Q1 (Biology) / CiteScore - Q1 (General Agricultural and Biological Sciences).

 Degani, O. ^a, Dor, S., Abraham, D., Cohen, R. Interactions between *Magnaporthiopsis maydis* and *Macrophomina phaseolina*, the causes of wilt diseases in maize and cotton. *Microorganisms* (2020), 8 (2), 249. (Free full-text link).

IF (4.1) ^b, five years-IF (4.5), Citations number ^d (47), Journal Rank and Quartile: JCR - Q2 (Microbiology) / CiteScore - Q2 (Microbiology).

32. Dor, S. and **Degani**, **O.**^a Uncovering the host range for maize pathogen *Magnaporthiopsis maydis. Plants* (2019), 8 (8), 259. (Free full-text link).

IF (4.0) ^b, five years-IF (4.4), Citations number ^d (26), Journal Rank and Quartile: JCR - Q1 (Plant Sciences) / CiteScore - Q1 (Plant Sciences).

 Degani, O. ^a, Dor, S., Movshovitz, D. and Rabinovitz, O. Methods for studying *Magnaporthiopsis maydis*, the maize late wilt causal agent. *Agronomy* (2019), 9 (4), 181. (Free full-text link).

IF (3.3) ^b, five years-IF (3.7), Citations number ^d (39), Journal Rank and Quartile: JCR - Q1 (Agronomy), Q1 (Plant Sciences) / CiteScore - Q1 (Agronomy and Crop Science).

 Degani, O. ^a, Movshowitz, D., Dor S., Meerson, A., Goldblat, Y., and Rabinovitz, O. Evaluating Azoxystrobin seed coating against maize late wilt disease using a sensitive qPCR-based method. *Plant Disease* (2019), 103 (2)238-248. (Free full-text Link).

IF (4.4) ^b, five years-IF (4.8), Citations number ^d (46), Journal Rank and Quartile: Plant Sciences (Q1).

35. **Degani**, **O**. ^a, Dor, S., Movshowitz, D., Fraidman, E., Rabinowitz, O. and Graph, S. Effective chemical protection against the maize late wilt causal agent, *Harpophora maydis*, in the field. *PloS ONE* (2018), 13 (12), e0208353 (Free full-text link).

IF (3.8) ^b, five years-IF (3.8), Citations number ^d (40), Journal Rank and Quartile: Multidisciplinary Sciences (Q1).

 Degani, O. Cochliobolus heterostrophus T-toxin gene expression modulation via G protein and MAPK pathways. Plant Protection Science (2015), 51 (2), 53–60. (Free full-text link).

IF (1.7) ^b, five years-IF (1.56), Citations number ^d (3), Journal Rank and Quartile: Agronomy (Q2); Plant Sciences (Q2).

 Degani, O. Production and purification of cutinase from *Fusarium* oxysporum using modified growth media and specificity cutinase substrate. *Advances in Bioscience and Biotechnology* (2015), 6 (4), 245-258. (Free fulltext link).

IF (1.26) °, five years-IF (n/a), Citations number $^{\rm d}$ (15), Journal Rank and Quartile: n/a

Degani, O. ^a, Drori R. and Goldblat Y. Plant growth hormones suppress the development of *Harpophora maydis*, the cause of late wilt in maize. *Physiology and Molecular Biology of Plants* (2015), 21 (1), 137-149. (Free full-text link).

IF (3.4) ^b, five years-IF (3.7), Citations number ^d (45), Journal Rank and Quartile: Plant Sciences (Q1).

 Degani, O. Mediation of fungicide fludioxonil activity and resistance through *Cochliobolus heterostrophus* G-protein and MAPK signaling pathways. *Phytoparasitica* (2015), 43 (2), 215-228. (Free full-text link).

IF (1.5) ^b, five years-IF (1.5), Citations number ^d (4), Journal Rank and Quartile: Plant Sciences (Q3).

 Degani, O. ^a and Goldblat Y. Ambient stresses regulate the development of the maize late wilt causing agent, *Harpophora maydis*. *Agricultural Sciences* (2014), 5 (7), 571-582. (Free full-text link).

IF (1.22) °, five years-IF (n/a), Citations number $^{\rm d}$ (25), Journal Rank and Quartile: n/a

 Degani, O. Pathogenicity assay for *Cochliobolus heterostrophus* G-Protein and MAPK signaling deficiency strains. *American Journal of Plant Sciences* (2014), 5 (9), 1318-1328. (Free full-text link).

IF (1.57) °, five years-IF (n/a), Citations number $^{\rm d}$ (8), Journal Rank and Quartile: n/a

42. **Degani**, **O.**^a, Weinberg, T. and Graph, S. Chemical control of maize late wilt in the field. *Phytoparasitica* (2014), 42 (4), 559-570. (Free full-text link).

IF (1.5) ^b, five years-IF (1.5), Citations number ^d (36), Journal Rank and Quartile: Plant Sciences (Q3).

43. **Degani, O.** G protein and MAPK signaling pathways control the ability of *Cochliobolus heterostrophus* to exploit different carbon sources. *Advances in Biological Chemistry* (2014), 4 (1), 40-50. (Free full-text link).

IF (1.35) °, five years-IF (n/a), Citations number $^{\rm d}$ (4), Journal Rank and Quartile: n/a

44. **Degani**, **O.** Gene expression modulation of two biosynthesis pathways via signal transduction in *Cochliobolus heterostrophus*. *Advances in Bioscience and Biotechnology* (**2014**), 5 (4), 340-352. (Free full-text link).

IF (1.26) °, five years-IF (n/a), Citations number $^{\rm d}$ (3), Journal Rank and Quartile: n/a

45. **Degani, O.**^a and Cernica, G. Diagnosis and control of *Harpophora maydis*, the cause of late wilt in maize. *Advances in Microbiology* (2014), 4 (2), 94-105. (Free full-text link).

IF (1.35) °, five years-IF (n/a), Citations number $^{\rm d}$ (50), Journal Rank and Quartile: n/a

46. Degani, O. Construction of a constitutively activated Gα mutant in the maize pathogen *Cochliobolus heterostrophus*. *American Journal of Plant Sciences*. (2013), 4 (12), 2394-2399. (Free full-text link).

IF (1.57) °, five years-IF (n/a), Citations number $^{\rm d}$ (2), Journal Rank and Quartile: n/a

 Degani, O. ^a, Lev, S. and Ronen M. Hydrophobin gene expression in the maize pathogen *Cochliobolus heterostrophus*, *Physiological and Molecular Plant Pathology*. (2013), 83, 25-34 (Free full-text link).

IF (2.8) ^b, five years-IF (2.8), Citations number ^d (15), Journal Rank and Quartile: Plant Sciences (Q2).

Degani, O. ^a *Cochliobolus heterostrophus* G-protein alpha and beta subunit double mutant reveals shared and distinct roles in development and virulence, *Physiological and Molecular Plant Pathology*. (2013), 82, 35-45. (Free full-text link).

IF (2.8) ^b, five years-IF (2.8), Citations number ^d (11), Journal Rank and Quartile: Plant Sciences (Q2).

Drori, R., Goldberg, D., Rabinovitz, O., Sharon A., Levy, M. and Degani, O. ^a Molecular diagnostic for *Harpophora maydis*, the cause of late wilt disease in northern Israel. *Phytopathologia Mediterranea*. (2013), 52 (1), 16–29. (Free full-text link).

IF (1.9) ^b, five years-IF (2.5), Citations number ^d (65), Journal Rank and Quartile: Plant Sciences (Q2).

50. Igbaria, A., Lev, S., Rose, M. S, Lee, B. N., Hadar, R., Degani, O., and Horwitz B. A. Distinct and combined roles of the MAP kinases of *Cochliobolus heterostrophus* in virulence and stress responses, *Molecular Plant-Microbe Interactions.* (2008), 21 (6), 769-80. (Free full-text link).

IF (3.2) ^b, five years-IF (3.5), Citations number ^d (84), Journal Rank and Quartile: Plant Sciences (Q2).

 Degani, O., Salman, H, Gepstein, S and Dosoretz, C. G. Synthesis and characterization of a new cutinase substrate, 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate. *Journal of Biotechnology*. (2006), 121 (3), 346-350. (Free full-text link).

IF (4.1) ^b, five years-IF (3.6), Citations number ^d (26), Journal Rank and Quartile: Biotechnology and Applied Microbiology (Q2).

52. Degani, O., Maor, R., Hadar, R., Sharon, A. and Horwitz, B. A. Host physiology and pathogenic variation of *Cochliobolus heterostrophus* strains with mutations in the G protein alpha subunit, CGA1. *Applied and Environmental Microbiology*. (2004), 70 (8), 5005-5009. (Free full-text link).

IF (3.9) ^b, five years-IF (n.a.), Citations number ^d (33), Journal Rank and Quartile: Biotechnology and Applied Microbiology (Q2); Microbiology (Q2).

Degani, O., Gepstein, S. and Dosoretz, C. G. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-beta-glucuronidase fused protein. *Journal of Biotechnology*. (2004), 107 (3), 265-273. (Free full-text link).

IF (4.1) ^b, five years-IF (3.6), Citations number ^d (36), Journal Rank and Quartile: Biotechnology and Applied Microbiology (Q2).

 Degani, O., Gepstein, S. and Dosoretz, C. G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. *Applied Biochemistry and Biotechnology*. (2002), 102 (1), 277-289. (Free full-text Link). IF (3.1)^b, five years-IF (2.9), Citations number ^d (122), Journal Rank and Quartile: Environmental Engineering (Q2), Biotechnology and Applied Microbiology (Q2).

^a Corresponding author

^b Official 2023 impact factor – ISI Web of Science – Journal Citation Report

^c The 2-year Google-based Journal Impact Factor, 2021-2022 (2-GJIF) based on Thomson Reuters' (TR) algorithm, as published on <u>http://wokinfo.com/essays/impact-factor</u>

^d Based on Google Scholar 18/03/2025 (see here)

C. Articles or Chapters in refereed Scientific Books

Published

- Degani O. Bio-Hydrolysis of Cotton Fibers' Cuticle Enhanced by Synergism between Cutinase and Pectinase. In Advances in Biology. (2024) Volume 7, Charles D. Grant (Editor), Nova Science Publishers, Inc. NY, USA, Chapter 4, pp 131-162. (<u>full-text link</u>).
- Degani O. Late Wilt of Maize: The Pathogen, the Disease, Current Status, and Future Perspective. In: Verma, P.K., Mishra, S., Srivastava, V., Mehrotra, S. (eds) Plant Pathogen Interaction. (2024) Springer, Singapore. (full-text link).
- Degani O. A Green Solution to Maize Late Wilt Disease. In *Trichoderma*: Taxonomy, Biodiversity and Applications. Nova Science Publishers, Inc. (2023), chapter 3. 65-82. (<u>full-text link</u>).
- Degani, O. Accurate virulence test method for *Cochliobolus heterostrophus* wild-type and mutant strains in the post-genomic era. *In* Pathogenicity of *Cochliobolus* Species in Post Genomic Era. 1st Edition. Bengyella L. and Devi Waikhom S. (Eds.). Stadium Press LLC, Texas, USA, (2017), chapter 4, 92-111.

D. <u>Accepted for Publication</u>

E. Articles in Conference Proceedings

 Chen A., Jacob M., Shoshani G., Dafny-Yelin M., Degani O., Rabinovitz O. Early detection of soil-borne diseases in field crops via remote sensing. *Precision Agriculture '21* (2021), Editor John V. Stafford. 217 – 224. (Link).

F. Entries in refereed Encyclopedias

1. **Degani O.** Topic review: Strategies to Cope with Late Wilt of Maize. In: *Encyclopedia* platform (MDPI), Subjects: Agriculture, Dairy and Animal Science. (2022). (Full-text link).

G. Other Publications

- Dafny Yelin M., Zonenberg T., Shlisel M., Degani O., and Tirza Zahavi, Examination of the resistance of hybrid grapevine bunches to downy mildew and powdery mildew '*Alon Hanotea*', 81, (2024), 28-31. [Hebrew]. (Full-text link).
- Zonenberg T., Dafny Yelin M., Shlisel M. and Degani O., Examination of Hybrid grapevine varieties' Resistance to Downey and Powdery mildew diseases in Northern Israel' *Alon Hanotea*', 77, (2023), 16-21. [Hebrew]. (Full-text link).
- 3. **Degani O.** A Green Solution to Maize Late Wilt Disease. IsraelAgri.com, *Israeli Agriculture International Portal.* 28 March (2022) (Full-text link).
- Degani O. How to promote gifted children. *Al Hazafon*, September (2021), 21. [Hebrew]. (Full-text link).
- 5. **Degani O.** The Enemy of My Enemy is My Friend a Green Solution to Late Wilt Disease of Maize. *Mews Masove*, (2021). [Hebrew].
- Degani O. ^a and Dor S. The secret life of the Maize Pathogen *Magnaporthiopsis maydis. Sade Vayerek*, The professional magazine of Israel Vegetable Growers Organization. (2019), 329, 42-45. [Hebrew]. (Full-<u>text link</u>).
- Degani O. Economical Solution for Late Wilt Disease of Corn. IsraelAgri.com, *Israeli Agriculture International Portal*. 04 March (2019). (Full-text link).
- Degani O. ^a, Dor S., Movshovitz D., Fraidman E., Rabinowitz O., Assaf Chen and Graph S. An economical solution for the late wilt disease of corn. *Sade Vayerek*, The professional magazine of Israel Vegetable Growers Organization. (2019), 324, 56-66. [Hebrew]. (Full text link).
- Degani O. ^a, Drori R., Goldblat Y. and Dor S. Plant hormones regulate the development *Harpophora maydis*, the maize late wilt-causing agent. *Nir Vatelem*, The professional magazine of Israel Extensive Cultivation Organization. (2017), 71, 15-24. [Hebrew]. (Full-text Link).
- Degani O. ^a, Goldblat Y. and Cohen S. Environmental conditions regulate the development of the maize late wilt causal agent, *Harpophora maydis*. *Nir Vatelem*, The professional magazine of Israel Extensive Cultivation Organization. (2015), 57, 24-30. [Hebrew]. (Full-text Link).
- 11. **Degani O.** A molecular assay for *Harpophora maydis*, the cause of maize late wilt disease. *Nir Vatelem*, The professional magazine of Israel

Extensive Cultivation Organization. (2013), 49, 24-31. [Hebrew]. (Full-text link).

- Degani O. Inquiry vs. research. Gifted, outstanding students and knowledge seekers (M.M.CH) *Journal of the Division for gifted and talented students*, Israel Ministry of education, February, (2013). [Hebrew]. (<u>Full-text Link</u>).
- Degani O. Late wilt of corn, pathogenesis, and control. *Nir Vatelem*, The professional magazine of Israel Extensive Cultivation Organization. (2011), 32, 10-13. [Hebrew]. (Full-text link).
- Degani O. Maize late wilt disease background and new findings. *Sade Vayerek*, The professional magazine of Israel Vegetable Growers Organization. (2009), 10, 51-52. [Hebrew]. (Full-text link).
- Degani O. *Harpophora maydis* in wilt of sweet corn: Characterization of the disease cycle and development of protection and control. *Yevul-Si*, The Journal of Israel Advance Agriculture, Special publication of the Northern R&D. (2008). [Hebrew].

^a Corresponding author

L. Articles under review or in preparation

 Hybrid grapevine resistance mechanism to downy and powdery mildews in Israel under warm Middle Eastern conditions. Zonenberg T., Zahavi T., Degani O., Shlisel M., Striem M., and Dafny-Yelin1 M.. (2025), *Plant Disease*, under review.

M. Academic Achievements

Dr. Degani is an expert in phytopathology, specializing in fungal interactions with host plants using biochemical and molecular approaches. For over fifteen years, his lab has conducted intensive research on late wilt disease of corn in Israel, one of the world's most affected regions. He is recognized as a global expert on this topic, with 30 peer-reviewed scientific papers published in leading journals and book chapters. In 2018, his team's focused research efforts culminated in developing a practical, efficient, and cost-effective Azoxystrobin-based control protocol, which can now be commercially applied to protect late wilt-susceptible maize cultivars in heavily infected areas.

In follow-up research (started in 2021), Dr. Degani's team developed and tested an eco-friendly biological solution to late wilt disease. In the past years, Dr. Degani's research group proved for the first time that the *M. maydis* pathogen could colonize secondary hosts, such as cotton, watermelon, and green foxtail, which help it survive. They developed a biological assay to identify soil contamination and studied the impact of green cultivation methods (crop rotation and no-till) on disease severity. Currently, their research focuses on unraveling the population structure of *M. maydis*, identifying variations in aggressiveness among pathogen strains, and studying its interactions with other maize pathogens, including *Fusarium verticillioides*, the causal agent of maize stalk rot.

Macrophomina phaseolina, the soil fungus responsible for charcoal rot disease, poses a significant threat to cotton fields in Israel and globally. The pathogen thrives in regions where crop rotation with corn—also susceptible to the *M. maydis* pathogen—occurs. Through a series of experiments, including Real-Time PCR-based detection in corn and cotton (both in potted seedlings and under field conditions over two full growing seasons), the team demonstrated antagonistic interactions between the two pathogens. In the later stages of the growing season, their co-occurrence resulted in a marked reduction of each pathogen in its primary host: *M. maydis* in corn and *M. phaseolina* in cotton. Furthermore, it was revealed that *M. maydis* exhibits an endophytic lifestyle in cotton but can become a severe pathogen under specific conditions. New findings from Dr. Degani's team highlight the effectiveness of the eco-friendly *Trichoderma*-based approach in controlling charcoal rot disease.

The group also investigates Fusarium species responsible for basal rot in onions (Allium cepa). Through the use of colony morphology, microscopic phylogenetic characteristics. DNA sequencing, and analysis. Neocosmospora (previously Fusarium soland) species complex was identified as the most prevalent species in northeastern Israel. In yellow onions of the Orlando cultivar from the Galilee region, *Neocosmospora* coexisted with *F. oxysporum* f. sp. cepae and F. acutatum. In the Golan Heights, Fusarium populations varied according to onion cultivars. Pathogenicity tests revealed that at least five Fusarium species caused disease symptoms at different levels and that antagonistic or synergistic interactions between specific species occurred. Additionally, effective chemical control agents were identified.

Dr. Degani's current research goals include (1) developing biological, chemical, and agrotechnical methods for disease control, (2) manipulating the plant microbiome to create eco-friendly tools for plant protection, (3) studying pathogen interactions and their roles in plant pathology and (4) develop and implement a green control method based on a clay carrier for slow release of Azoxystrobin against the cause of late wilt disease in maize.