Name: Ofir Degani Date: 19 October 2025

CURRICULUM VITAE

1. Personal Details

Permanent Home Address: Hativat Givati 43/1, Karmiel, 2199243

Cellular Phone: 972-546780114

Electronic Address: d-ofir@migal.org.il (MIGAL), ofird@telhai.ac.il (Tel-Hai),

d-ofir@bezeqint.net (home)

<u>Google Scholar matrix</u>: Citations -1548 (Since 2020 - 1181), h-index -25, (Since 2020 - 22), i10-index -42 (Since 2020 - 37).

<u>Scopus matrix:</u> Citations – 1025, h-index – 20, Author Position for 2015 – 2024: First author 66%, Co-author 0%, Last author 13%, Single author 21%.

2. Higher Education

A. Undergraduate and Graduate Studies

Period of Study	Name of Institution and Department	Degree	Year of Approval of Degree
2001 - 2005	Technion Institute of Technology (Israel).	Ph.D.	2005
1998 - 2001	Technion Institute of Technology (Israel).	M.Sc.	2001
1993 - 1997	Haifa University (Oranim campus, Israel)	B.Sc. and teaching certification	1997

B. Post-Doctoral Studies

Period of	Name of	Degree	Year of Completion
Study	Institution,	_	_
_			

	Department, and Host		
2005 - 2006	Migal - Galilee Research Institute (Israel), Dr. Doron Goldberg	-	2006

3. Academic Ranks and Tenure in Institutes of Higher Education

Dates	Name of Institution and	Rank/Position
	Department	
2019 - Today	Tel-Hai College (Israel)	Senior lecturer and Senior
		staff member
2017 - Today	Migal - Galilee Research	Senior researcher and
	Institute, Phytopathology and Biological Control	principal investigator
	Lab (Israel)	
2015 - 2017	Ohalo College (Israel)	Senior lecturer and Senior
		staff member
2009 - 2012	Tel-Hai Technology	Lecturer and staff member
	College (Israel)	
2007 - 2017	Migal - Galilee Research	Research group leader
	Institute, Phytopathology and Crop Protection Lab	
	(Israel)	
2006 - 2019	Tel-Hai College (Israel)	Lecturer and staff member
2005 - 2006	Migal - Galilee Research	Post-doctoral fellow at the
	Institute (Israel)	laboratory of Dr. Doron Goldberg
2001 - 2015	Ohalo College (Israel)	Lecturer and staff member

4. Offices in Academic Administration

2025 - Today – Head of the B.Sc. Biotechnology Department, Tel-Hai College (Israel).

2025 - Today – Faculty representative on the committee for establishing regulations at the future Tel Hai University.

- **2024 2025** Accompanying the IDF reserve servants students on behalf of the Faculty of Sciences, Tel-Hai College (Israel).
- **2021 2022** Chairman of the Committee for the Advancement of Online Laboratory Courses in collaboration with universities in Israel and abroad, in the Faculty of Science in Tel-Hai College (Israel).
- **2007 2012** Member of the pre-veterinary program leading committee at Tel-Hai College (Israel).
- **2007 2008** Member of the research committee of Ohalo College (Israel).
- **2007** Led the master's degree program preparation at Ohalo College (Israel).

5. Scholarly Positions and Activities outside the Institution

a. Representation in academic committees

2022 - 2026 – Israel's representative in the COST Action Management: CA21134 / Towards zero Pesticide AGRIculture: European Network for Sustainability (ToP-AGRI-Network), European Cooperation in Science & Technology. (Link).

b. Academic Editorial Positions

Editorial Board positions

- **2024 Today** Editorial Board member, *Journal of Fungi*. (Link).
- **2022 Today** Associate Editor Board member, *Frontiers in Fungal Biology*, Fungi-Plant Interactions. (<u>Link</u>).
- **2022 2024** Editorial Board member, *Agrochemicals*. (Link).

Academic Editing of Special Issue/Topic

- **2025 Today** Academic Editor, Research Topic: "Insights into the Molecular Dynamics of Stress Physiology in Allium Crops." *Frontiers in Plant Science* (Link).
- **2025 Today** Academic Editor, Special Issue: "Plant Fungal Diseases and Crop Protection 2nd Edition," *Journal of Fungi*. (Link).
- **2024** Academic Editor, Special Issue: "Plant Fungal Diseases and Crop Protection," *Journal of Fungi*. (Link).
- **2023 2024** Academic Editor, Special Issue: "Roles of Soil and Roots Biotic and Abiotic Conditions in Fungal-Plant Interactions and Plant Performance 3.0," *Journal of Fungi.* (Link).

2023 - 2025 – Academic Editor, Research Topic: "Plant-friendly microorganisms as a bio-barrier against pathogens," *Frontiers in Fungal Biology*, Fungi-Plant Interactions. (Link).

2021 - 2023 — Academic Editor, Special Issue: "Roles of Soil and Roots Biotic and Abiotic Conditions in Fungal-Plant Interactions and Plant Performance 2.0," *Journal of Fungi.* (Link).

2021 - 2022 — Academic Editor, Special Issue: "Interactions between Microorganisms in Plant Diseases," *Agriculture*. (Link).

2021 - 2022 – Academic Editor, Special Issue: "Roles of Soil and Roots Biotic and Abiotic Conditions in Fungal-Plant Interactions and Plant Performance," *Journal of Fungi.* (Link).

c. Reviewing scientific papers

Most reviews can be found on the Web of Science at:

https://www.webofscience.com/wos/author/record/F-3978-2014

18/08/2025 – *Plant Disease*.

10/01/2025 – *Plant Disease*.

23/10/2024 – Cereal Research Communications.

17/09/2024 – Fungal Biology Reviews.

06/06/2024 – Fungal Biology Reviews.

16/12/2023 - *BMC Plant Biology*.

21/04/2023 – *Plant Disease*.

16/01/2023 - Plant Pathogen Interaction. Springer.

24/11/2021 – European Journal of Plant Pathology.

30/12/2020 – *Microorganisms*.

11/12/2020 – *Microorganisms*.

03/09/2020 – *Journal of Fungi*.

06/08/2020 – *BMC Genomics*.

12/06/2020 – *Plants*.

13/05/2020 – *Journal of Fungi*.

20/04/2019 – New Pest Response Guidelines. US Department of Agriculture.

31/**03**/**2019** – *Plant Pathology*.

10/03/2018 – European Journal of Plant Pathology.

13/02/2015 – *Biocontrol Science and Technology*.

29/09/2014 – *Phytopathology*.

05/04/2014 – *Phytoparasitica*.

d. Membership in scientific societies

2008 - Today (with a few years of non-membership in between) — Israel Phytopathology Society (IPS).

1999 - Today (with a few years of non-membership in between) — Israel Society for Microbiology (ISM).

2010, 2019, 2023 – Israel Scientific Society of Field Crops and Vegetables

2005, 2011, 2023 – Israel Societies for Experimental Biology - FISEB (ILANIT)

2022 – Israel Scientific Society of Science and the Environment

2019 – American Society for Microbiology (ASM).

2012 – Mediterranean Phytopathological Union

6. Participation in Scholarly Conferences

a. Active Participation

<u>International Conferences</u>

Date	Name of Conference	Place of Conference	The subject of the Lecture/Discussion	Role
2025	XVII Meeting of the Working Group 'Biological and integrated control of plant pathogens'	Torino, Italy	Integrated biological-chemical interface for eco-friendly control of maize late wilt and cotton charcoal rot diseases Antagonistic Interactions between Maize Seeds Microbiome Species and the Late Wilt Disease Agent, Magnaporthiopsis maydis	Selected lecture and Poster

2025	COST 5th	Bucharest,	Towards Zer0 Pesticides	Management
	General	Romania	Agriculture Network -	committee
	Assembly and		Management Committee	member
	conference		meeting and European Research	
			Alliance Event	
2025	European Conference on Fungal Genetics (ECFG17)	Dublin Irland	Impact of Fusarium Species Composition and Incidence on Onion Basal Rot in Northeastern Israel The maize late wilt pathogen	Selected lecture and Poster
			Magnaporthiopsis maydis interspecies interactions, and its combined influence with Fusarium verticillioides	
2025	The 4th World Biological Science and Technology (BIOST2025)	Macau China Hybrid	Integrated management of the Cotton Charcoal Rot Disease using biological and chemical inducers	Invited lecture and Session chair
2024	Green Chemistry Conferences 2024	Paris, France Hybrid	6-Pentyl-α-Pyrone, a Strong Antifungal Compound, against the Maize Late Wilt Pathogen, Magnaporthiopsis maydis	Invited lecture
2024	3rd International Meet on Food Science and Technology FOODTECH	Frankfurt, Germany Hybrid	Integrated Biological and Chemical Control against the Maize Late Wilt Agent Magnaporthiopsis maydis	Invited lecture
	MEET2024			
2024	COST 4th General Assembly and conference	Zagreb, Croatia	Towards Zero Pesticides Agriculture Network - Management Committee meeting	Management committee member
2023	COST 2nd General Assembly and conference	Uppsala, Sweeden	Towards Zero Pesticides Agriculture Network - Management Committee meeting	Management committee member
2023	Crop protection futures in agriculture	Uppsala, Sweeden	Crop protection futures in agriculture	Participant
2023	The 12 th International Congress of Plant	Lyon, France	Trichoderma asperellum secreted 6-pentyl-alpha-pyrone protects maize plants from the late wilt pathogen, Magnaporthiopsis maydis.	Selected lecture

	Pathology (ICPP)		The maize late wilt fungus Magnaporthiopsis maydis in Israel consists of aggressive strains that can specialize in disrupting growth or plant health.	Poster
2023	The 16 th European Conference on Fungal Genetics (ECFG16)	Innsbruck, Austria	Trichoderma workshop and the general assembly.	Participant
2023	The 10th Israel Societies for Experimental Biology - FISEB (ILANIT)	Eilat, Israel	Trichoderma asperellum secreted 6-pentyl-α-pyrone protects maize plants from the late wilt pathogen, Magnaporthiopsis maydis.	Poster
2022	The 2 nd International Conference on Plant Sciences and Biology	Webinar	A green solution to maize late wilt disease.	Invited lecture
2019	12th Annual International Symposium on Agricultural Research	Athens, Greece	The secret life of the maize pathogen, <i>Harpophora maydis</i>	Invited lecture
2018	1st Annual Congress on Plant Science and Biosecurity (ACPB)	Valencia, Spain	Chemical protection using drip irrigation and seed coating against maize late wilt disease in the field	Invited lecture
2018	The 14 th European Conference on	Haifa, Israel	Trichoderma workshop	Co-chair
	Fungal Genetics (ECFG14)		Chemical protection using drip irrigation and seed coating against maize late wilt disease in the field	Poster
2018	The 11th International Congress of Plant Pathology (ICPP)	Boston, USA	Uncovering host range for the maize pathogen <i>Harpophora maydis</i>	Poster
2017	The 10 th Annual International Symposium on Agricultural Research	Athens, Greece	A qPCR-based method for evaluating the efficiency of seed coating against maize Late wilt disease	Invited lecture and Session chair

2011	Israel Societies for Experimental Biology - FISEB (ILANIT)	Eilat, Israel	Diagnosis and control of maize late wilt disease	Poster
2005	Israel Societies for Experimental Biology - FISEB (ILANIT)	Eilat, Israel	G protein and MAPK pathways in the maize pathogen Cochliobolus heterostrophus: signaling for gene expression, development and virulence	Selected lecture
2005	The US-Israel Binational Agricultural Research and Development Fund (BARD) workshop	California, USA	Signal Transduction and Hydrophobin Gene Expression in the Maize Pathogen Cochliobolus heterostrophus	Poster
2005	XXIII Fungal Genetics Conference	California, USA	Signal Transduction and Hydrophobin Gene Expression in the Maize Pathogen Cochliobolus heterostrophus	Poster

<u>Israel Conferences</u>

Date	Name of Conference	Place of Conference	Subject of Lecture/Discussion	Role
2025	Agricultural Science Conference in Israel	Jerusalem, Israel	Environmentally friendly control against the most challenging diseases in corn and cotton crops in Israel	Selected lecture
2025	The 53 th Israel Annual Conference on Science and the Environment	Tel-Aviv University, Israel	Integrated biological-chemical interface for eco-friendly control of maize late wilt and cotton charcoal rot diseases	Selected lecture
2025	The 44th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Intra-species Interaction and Relationship with Fusarium verticillioides in the Maize Wilt Late Disease Agent, Magnaporthiopsis maydis Development of an Azoxystrobin Slow-Release Clay Carrier Against the Maize Late Wilt Disease Agent, Magnaporthiopsis maydis	Selected lecture and Poster
2024	The 43 rd Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Fusarium species composition in agricultural fields in northeastern Israel and its effect on the onion basal rot disease	Poster

2023	The 25th Tel-Hai	Tel-Hai, Israel	Discovery of a new antifungal	Selected
	Research Conference		compound, 6-Pentyl-α-Pyrone,	lecture and session chair
	Conference		against the corn late wilt pathogen.	session chan
2023	Israel Scientific Society of Field Crops and Vegetables annual seminar	Rehovot, Israel	Interactions between Magnaporthiopsis maydis and Macrophomina phaseolina, the causes of wilt diseases in maize and cotton.	Invited Lecture
2022	The 50 th Israel Annual Conference on Science and the Environment	Tel-Aviv, Israel	Pathogenic interactions between Macrophomina phaseolina and Magnaporthiopsis maydis in mutually infected cotton sprouts.	Poster
2022	The 24 th Tel-Hai Research Conference	Tel-Hai, Israel	Assessment of susceptibility of maize varieties to late wilt disease caused by <i>Magnaporthiopsis maydis</i> using remote sensing tools	Selected lecture and session chair
2022	the 42 nd Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Isolation, Identification, and Control of <i>Fusarium</i> spp., the Causal Agents of Onion Basal Rot in Northeastern Israel	Selected lecture
2022	Israel Society for Microbiology (ISM) annual meeting	Be'er Sheva, Israel	A green solution to maize late wilt disease	Poster
2022	Functional Mycology Conference	Tel-Hai, Israel	Fungi and the Environment Session	Session chair
2021	Agricultural Science Conference in Israel	Ramat-Gan, Israel	A green solution to maize late wilt disease	Selected lecture
2020	The 22 th Tel-Hai Research Conference	Tel-Hai, Israel	Study of the interactions between Macrophomina phaseolina and Magnaporthiopsis maydis, as pathogens in cotton and corn	Selected lecture
2020	Shamir Research Institute, Conference on land reclamation and conservation	Katzrin, Israel	The interaction between Macrophomina phaseolina and Harpophora maydis as pathogens in corn and cotton	Selected lecture
2019	The 21 st Tel-Hai Research Conference	Tel-Hai, Israel	The interaction between Macrophomina phaseolina and Harpophora maydis as pathogens in corn and cotton	Selected lecture and session chair
2019	The 40 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	A new host range for the maize pathogen <i>Harpophora maydis</i>	Selected lecture

2019	The 10 th Annual Conference of Excellence in Education, Israel Ministry of Education	Online meeting	Session - The Courage to be Equal	Session chair
2019	Israel Scientific Society of Field Crops and Vegetables, An annual seminar	Rehovot, Israel	Combining pesticides to prevent late wilt disease in corn in the field	Selected lecture
2018	The 20 th Tel-Hai Research Conference	Tel-Hai, Israel	Seed coating and drip protection against <i>Harpophora maydis</i> in the field	Selected lecture and session chair
2018	The 39 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Seed coating and drip protection against <i>Harpophora maydis</i> in the field	Selected lecture
2017	The 38 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	A qPCR-based method for detecting and monitoring <i>Harpophora maydis</i> inside the host tissues	Selected lecture
2017	The 19th Tel-Hai Research Conference	Tel-Hai, Israel	A qPCR-based method for detection and monitoring <i>Harpophora maydis</i> inside the host tissues	Selected lecture
2017	The 9 th Conference of Excellence in Education	Ramat Gan, Israel	The Division for Gifted and Outstanding Students	Session chair
2016	The 18 th Tel-Hai Research Conference	Tel-Hai, Israel	Plant growth hormones suppress the development of <i>Harpophora maydis</i> , the cause of late wilt in maize	Selected lecture
2016	Israel Molecular Mycology Meeting (MMM)	Haifa, Israel	A qPCR-based method for detection and monitoring <i>Harpophora maydis</i> inside the host tissues	Selected lecture
2016	The 37 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Plant hormones regulate the development of <i>Harpophora maydis</i> , the cause of late wilt in maize	Selected lecture
2016	Israel Plant ecology	Tel-Hai, Israel	Ambient stresses regulate the development of the maize late wilt-causing agent, <i>Harpophora maydis</i>	Selected lecture
2015	The 17 th Tel-Hai Research Conference	Tel-Hai, Israel	Cochliobolus heterostrophus G- protein and MAPK signaling pathways control the fludioxonil fungicide activity and resistance	Selected lecture
2015	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	The agent of late wilt of corn, Harpophora maydis, pathogenesis and control	Poster

2015	the 36 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Cochliobolus heterostrophus G- protein and MAPK signaling pathways control the fludioxonil fungicide activity and resistance	Selected lecture
2015	The 8 th Conference of Excellence in Education	Ramat-Gan, Israel	Enzymatic hydrolysis of cotton fabrics cuticle components	Invited Lecturer
2014	The 16 th Tel-Hai Research Conference	Tel-Hai, Israel	The late wilt causal agent, Harpophora maydis, pathogenesis and control	Selected lecture
2013	The 15 th Tel-Hai Research Conference	Tel-Hai, Israel	The agent of late wilt of corn, Harpophora maydis, pathogenesis and control	Selected lecture
2013	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	The agent of late wilt of corn, Harpophora maydis, pathogenesis and control	Poster
2011	The 13 th Tel-Hai Research Conference	Tel-Hai, Israel	Late wilt of maize: Characterization of the pathogenesis and identifying means of control	Selected lecture
2010	The 31st Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Late wilt of maize: Characterization of the pathogenesis and identifying means of control	Selected lecture
2010	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Late wilt of maize: characterization of the pathogenesis and identifying means of control	Poster
2010	Israel Scientific Society of field crops and vegetables annual seminar	Rehovot, Israel	The late wilt causal agent, Harpophora maydis, pathogenesis and control	Selected lecture
2009	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Plants' hormone effect on the development of the maize late wilt agent, <i>Harpophora maydis</i>	Poster
2009	The 30 th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Plants' hormone effect on the development of the maize late wilt agent, <i>Harpophora maydis</i>	Selected lecture
2008	The 10 th Tel-Hai Research Conference	Tel-Hai, Israel	Development of molecular and biological tests for detecting and characterizing late wilt in corn	Selected lecture
2008	The 29th Congress of the Israeli Phytopathological Society	Beit Dagan, Israel	Hydrophobins genes expression in the maize pathogen <i>Cochliobolus heterostrophus</i>	Selected lecture

2005	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Enzymatic hydrolysis of cotton fibers	Poster
2004	Israel Society for Microbiology (ISM), annual meeting	Ramat-Gan, Israel	Enzymatic hydrolysis of cotton fibers	Poster
2001	Israel Society for Microbiology (ISM), annual meeting	Tel-Aviv, Israel	Phytopathogenic Enzymes and Their Potential Use in Scouring of Natural Fibers	Poster
2000	Israel Society for Microbiology (ISM), annual meeting	Tel-Aviv, Israel	Enzymatic hydrolysis of cotton fiber cuticle in textile fabrics	Poster
1999	Israel Society for Microbiology (ISM), annual meeting	Tel-Aviv, Israel	Enzymatic hydrolysis of cotton fiber cuticle in textile fabrics	Poster
1999	Israel Society for Microbiology (ISM), annual meeting	Haifa, Israel	Enzymatic hydrolysis of cotton fiber cuticle in textile fabrics	Selected lecture

b. Organization of Conferences or Sessions

Date	Name of Conference	Place of Conference	Subject of Conference	Role
2023	The 25 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Multidisciplinary Studies in Applied Microbiology	Session organizing committee head
2022	The 24 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2022	Functional Mycology Conference	Tel-Hai, Israel	Functional Mycology	Conference organizing committee
2020	The 22 nd Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head

2019	The 21 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2018	The 20 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2017	The 19 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2016	The 18 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2015	The 17 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2014	The 16 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2013	The 15 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2011	The 13 th Tel-Hai Research Conference	Tel-Hai, Israel	Session - Fungal Diseases in Plants in the Galilee	Session organizing committee head
2010	The US-Israel Binational Agricultural Research and Development Fund (BARD)	Haifa, Israel	<i>Trichoderma</i> Workshop	Organizing committee member

7. Invited Lectures\ Colloquium Talks

Date	Place of Lecture	Name of Forum	Presentation/Comments
2025	The Ohalo Manor Hotel, Kinneret, Israel	The Israel Ministry of Agriculture Plant Diseases Course for Growers	Integrated management of the Maize Late Wilt and Cotton Charcoal Rot diseases, using biological and chemical inducers
2023	Hazera Seeds, Brurim Farm, Israel	Hazera Seeds Seminar	Isolation, characterization, and control of <i>Fusarium</i> spp., the cause of onion (Allium cepa) Basal rot in northeast Israel

2023	Southern farm hall,	Macrophomina	The charcoal rot disease in
	Misamia, Israel	Seminar	cotton, challenges and possible solutions
2018	Spanish National Research Council, Institute for Sustainable Agriculture (IAS), Cordoba, Spain	Institutional seminar	Economic and effective treatment against maize late wilt disease in the field

8. Research Grants

a. Competitive grants awarded

Publications related to research are referred to by the number in the list of publications.

Role in Research	Co-Researcher	Topic	Funded by/ Amount	Year
PI	Dr. Onn Rabinovitz Mr. Yoav Golan	Establishment of pathogens in wheat and their impact on summer crops in the crop cycle – corn, cotton, and sesame.	Israel's Organization of Extensive Cultivation. 25,000 NIS	2025- 2026
Co-PI	Dr. Meri Dafni- Yalin (PI) Dr. Roni Gafni Dr. Onn Rabinovitz Dr. Liora Shaltiel- Harpaz	Examining the effectiveness of chemical and biological treatments for controlling the fungus <i>Athelia rolfsii</i> (Southern blight) and the earwig insect <i>Euborellia annulipes</i> in peanuts.	Israel Plant Council, Ministry of Agriculture 63,750 NIS	2025
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an integrated management control for charcoal rot disease in cotton: a clay-based formula for the slow release of Azoxystrobin in the sowing strip and biological seed dressing.	Israel Council for Cotton Production and Marketing Ltd. 60,000 NIS	2025
PI	Dr. Onn Rabinovitz Mr. Yoav Golan	Development of an integrated management control for late wilt disease in corn: a clay-based formula for the slow release of Azoxystrobin in the sowing strip and biological seed dressing.	Israel's Organization of Extensive Cultivation. 29,000 NIS	2025

PI	Mr. Elyahu Margalit	Development of an Eco- Friendly Interface Using <i>Trichoderma</i> spp. to Control Onion Basal Rot Disease	Israel Plant Council, Ministry of Agriculture	2024- 2025
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an eco-friendly pesticide interface, based on <i>Trichoderma</i> fungi, against the cause of cotton charcoal rot Publication: 8	Israel Council for Cotton Production and Marketing Ltd. 70,000 NIS	2024
PI	Mr. Elyahu Margalit	Chemical control of <i>Fusarium</i> spp., the causal agents of onion (<i>Allium cepa</i>) basal rot Publications: 7, 10, 14	Israel Plant Council, Ministry of Agriculture 28,000 NIS	2023- 2024
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an eco-friendly pesticide interface, based on <i>Trichoderma</i> fungi, against the cause of cotton charcoal rot Publication: 9	Israel Council for Cotton Production and Marketing Ltd. 50,000 NIS	2023
PI	Dr. Onn Rabinovitz Mr. Yoav Golan	Biological enrichment of fodder corn seeds against the late wilt disease Publication: 6	Israel's Organization of Extensive Cultivation. 20,000 NIS	2023
PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	ICA Israel (Jewish Colonization Association) 25,000 \$	2023
PI	Dr. Onn Rabinovitz Dr. Assaf Chen	Development of an eco-friendly pesticide interface, based on <i>Trichoderma</i> fungi, against the cause of cotton charcoal rot Publication: 12	Israel Council for Cotton Production and Marketing Ltd. 55,000 NIS	2022

Co-PI	Dr. Shaul	Isolation and identification of	Israel Plant	2022
	Naschitz (PI)	apple fruits' fungal pathogens	Council, Fruit	
			Branch,	
			Ministry of	
			Agriculture	
			7,000 NIS	
PI	Mr. Shaul Graph	Isolation and Identification of	Israel Plant	2022
	Mr. Elyahu	Fusarium spp., the causal	Council,	
	Margalit	agents of onion (<i>Allium cepa</i>) basal rot in northeastern Israel	Ministry of	
	iviai gaiit	basai fot ili northeastern Israel	Agriculture	
		Publication: 7	17,000 NIS	
PI	Dr. Onn	Combined biological-chemical	Israel's	2022
	Rabinovitz	pesticide to prevent late wilt in	Organization	
		corn	of extensive	
		Publications: 12, 20	cultivation	
			20,000 NIS	
PI	Mr. Shaul Graph	Chemical control of Fusarium	Israel Plant	2021
	N. F. 1	spp., the causal agents of onion	Council,	
	Mr. Elyahu	(Allium cepa) basal rot	Ministry of	
	Margalit	Publications: 10, 14, 27	Agriculture	
		1 dolleddolls. 10, 14, 27	18,000 NIS	
PI	Mr. Shaul Graph	Chemical control of <i>Fusarium</i>	Israel Plant	2020
	_	spp., the Causal Agents of	Council,	
	Mr. Elyahu	Onion (Allium cepa) Basal Rot	Ministry of	
	Margalit	Dublication 14 27	Agriculture	
		Publication: 14, 27	10,500 NIS	
DI				
PI		Biological control of	Israel Council	2020
		Macrophomina phaseolina, the cotton charcoal rot disease	for Cotton	
		causal agent	Production and Marketing	
			Ltd.	
		Publications: 11, 18	20,000 NIS	
DI	D. C.C. II	T 1 1 1 1 1 1 2 2		
PI	Prof. Soliman	Isolation and identification of	ICA – Migal	2020
	Khatib	active ingredient against	accelerator,	
		Magnaporthiopsis maydis, the maize Late-wilt disease causal	Israel	
		agent	100,000 NIS	
		Publications: 16, 20, 22		
		,,		

Co-PI	Dr. Assaf Chen	Using remote sensing tools for	Israel Ministry	2019-
	(PI)	the early detection and	of Agriculture	2021
	D. Mara Dafaa	prevention of soil-borne	and Rural	
	Dr. Mery Dafny Yelin	diseases in field crops while	Development	
	1 emi	reducing amounts of pesticides and increasing yield	Chief Scientist 450,000 NIS	
		Publications: 13, 17, 19, 21, 24	(Partial share 82,000 NIS)	
PI	Mr. Shaul Graph	Isolation, characterization, and	Israel Plant	2019
		control of <i>Fusarium spp.</i> f. sp.	Council,	
		cepae, the cause of the onion	Ministry of	
		basal plate rot in northern Israel	Agriculture	
		Publications: 27, 32	8,000 NIS	
PI	Dr. Assaf Chen	The presence of <i>Harpophora</i>	Israel's	2019
	Du Onn	maydis in fodder maize, its	Organization	
	Dr. Onn Rabinovitz	interaction with other	of extensive	
	Tatomo vitz	endophytes in the plant, and its effect on the nutritional value of	cultivation	
		the corn silage	25,000 NIS	
		the com shage	·	
		Publications: 19, 20, 21, 25		
PI	Dr. Roni Cohen	Interactions	Israel Council	2019
		between Magnaporthiopsis	for Cotton	
		maydis and Macrophomina	Production	
		phaseolina, the Causes of Wilt Diseases in Maize and Cotton	and Marketing Ltd.	
		Diseases in Marze and Cotton	Liu.	
		Publications: 18, 20, 21, 33	15,000 NIS	
PI	Mr. Shaul Graph	Isolation and Identification of	Israel Plant	2018
		Fusarium spp., the Causal	Council,	
		Agents of Onion (Allium cepa)	Ministry of	
		Basal Rot in Northeastern Israel	Agriculture	
		Publication: 32	41,000 NIS	
PI	Dr. Roni Cohen	Interactions	Israel Council	2018
	Mr Shaul Granh	between Magnaporthiopsis	for Cotton	
	Mr. Shaul Graph	maydis and Macrophomina	Production	
		phaseolina, the Causes of Wilt Diseases in Maize and Cotton	and Marketing Ltd.	
		Publications: 18, 20, 21, 33	17,000 NIS	
PI	Dr. Moshe Meron	Thermal detection and chemical	Israel's	2018
	Dr. Assaf Chen	control of the maize late wilt	Organization of extensive	
Í	21.110001 011011	causing agent, <i>Harpophora</i> maydis	cultivation	
	Mr. Shaul Graph	Publications: 20, 21, 31	25,000 NIS	

PI	Dr. Mery Dafny Yelin Mr. Shaul Graph	Protection and control against <i>Harpophora maydis</i> , the causing agent of maize late wilt Publications: 12, 20, 21, 29, 31, 34, 35, 36, 37	Israel Ministry of Agriculture and Rural Development Chief Scientist	2015-2017
PI		Ambient Stresses influence on	420,000 NIS Israel	2014
II		the development of the maize late wilt Causing agent, Harpophora maydis	Northern R&D 20,000 NIS	2014
		Publications: 21, 35, 42		
PI	Mr. Shaul Graph	Involvement of <i>Harpophora</i> maydis in sweet corn wilt disease: characterizing the disease course and developing ways to eradicate it Publications: 20, 21, 35, 36, 37, 44, 47, 51	Israel Northern R&D 40,000 NIS	2013
PI	Mr. Shaul Graph	Harpophora maydis wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 20, 21, 35, 36, 37,	The Jewish National Fund (Keren Kayemeth LeIsrael)	2012
		44, 47, 51	25,000 NIS	
PI	Dr. Tsafrir Weinberg Mr. Shaul Graph Dr. Onn Rabinovitz	Eradicating the late wilt disease in corn Publications: 20, 21, 35, 36, 37, 44, 47, 51	Israel Plant Council, Ministry of Agriculture 25,000 NIS	2011
PI	Mr. Shaul Graph	Harpophora maydis wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 20, 21, 35, 36, 37, 44, 47, 51	Israel Plant Council, Ministry of Agriculture 15,000 NIS	2011
PI	Dr. Efraim Zuckerman Mr. Shaul Graph	Harpophora maydis wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 20, 21, 35, 36, 37, 44, 47, 51	Israel Plant Council, Ministry of Agriculture 35,000 NIS	2010

PI	Prof. Benjamin A Horwitz Dr. Doron Goldberg Dr. Efraim Zuckerman Mr. Shaul Graph	Harpophora maydis wilt of corn: Characterization of the disease cycle and development of protection and control Publications: 20, 21, 35, 36, 37, 44, 47, 51	Israel Plant Council, Ministry of Agriculture 35,000 NIS	2009
PI	Prof. Benjamin A Horwitz Dr. Doron Goldberg, Mr. Shaul Graph	Involvement of the fungus Harpophora maydis in causing late wilt disease in sweet corn: characterizing the course of the disease and finding ways to control it Publications: 20, 21, 35, 36, 37, 44, 47, 51	The Jewish National Fund (Keren Kayemeth LeIsrael) 50,000 NIS	2008
PI		Diagnosis and control of maize late wilt disease Publications: 20, 21, 35, 36, 37, 44, 47, 51	Israel Northern R&D 25,000 NIS	2007

b. Israeli grants awarded

PI	Dr. David Levi	Development of Trichoderma- Based Control for Onion Basal Rot Disease.	Hazera Seeds, Israel. 15,000 NIS	2025
PI	Dr. Onn Rabinovitz	Biological enrichment of cover plants, pre-growing cotton with minimum tillage, for protection against the charcoal rot disease (Macrophomina)	RegenUP, Israel 16,000 NIS	2025
PI	Dr. Onn Rabinovitz	Monitoring disease symptoms and conducting molecular surveillance of charcoal rot infestations in cotton plots following the pre-growth of cover plants and implementation of minimum tillage	Adama Haya biodynamics (Living Soil), Israel 75,000 NIS	2024- 2026
PI	Mr. Ran Yifa Dr. Assaf Chen	Cultivars ⁷ resistance assay for maize late wilt disease Publication: 13, 20	CTS Group 14,000 NIS	2021

PI	Dr. Onn	Improved chemical control	Netafim Ltd.	2017
	Rabinovitz	against the cause of late wilt in	Israel	
	Mr. Shaul Graph	corn Publications: 20, 21, 31, 35	8,000 NIS	

c. Tel-Hai, Migal, and Ohalo internal grants awarded

PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	Migal – Galilee Research Institute	2024
PI	-	Support in funding equipment for research purposes	Tel-Hai College, Israel, Science Relations Foundation 8,000 NIS	2023
PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	Migal – Galilee Research Institute	2023
PI	Dr. Shaul Naschitz Prof. Soliman Khatib Prof. Dov Prusky	The formation process of <i>Alternaria</i> black spot disease in stored persimmons and its prevention through treatments with antioxidants	Tel-Hai College, Israel, Science Relations Foundation 20,000 NIS	2023
PI	Prof. Giora Rytwo	Developing an Azoxystrobin slow-release clay carrier for eco-friendly control of corn late wilt disease	Tel-Hai College, Israel, Science Relations Foundation 20,000 NIS	2022
PI	Prof. Soliman Khatib	Purification and identification of <i>Trichoderma asperellum</i> secreted ingredients with antifungal activity against <i>Magnaporthiopsis maydis</i> , the maize late-wilt disease causal agent Publications: 16, 20, 22	Migal – Galilee Research Institute 40,000 NIS	2021

PI Co-PI	Dr. Hagai Shemesh Dr. Onn Rabinovitz Dr. Haim Reuveni (PI)	Eco-friendly control against corn late wilt by strengthening the soil mycorrhizal networks Publications: 17, 20, 21, 23 Characterization of the profile of volatiles from the leaves and	Tel-Hai College, Israel, Science Relations Foundation 20,000 NIS Migal — Galilee	2020
Ca Di	Dr. Soliman Khatib Prof. Jacob Vaya	flowers of the cannabis plant in response to environmental stress	Research Institute 90,000 NIS	2010
Co-PI	Dr. Haim Reuveni (PI) Dr. Chen Katz	Biological control of pests and diseases in cannabis	Migal – Galilee Research Institute	2018
PI		Biological control against Harpophora maydis, the maize Late-wilt disease causal agent Publications: 20, 21, 22, 24, 26	Migal – Galilee Research Institute	2018
PI		Biological control against Harpophora maydis, the maize Late-wilt disease causal agent Publications: 19, 20, 24, 26	Migal – Galilee Research Institute 45,000 NIS	2017
PI		(1) Understanding fungicide activity and resistance regulation through fungal signaling pathways. (2) Involvement of <i>Harpophora maydis</i> in causing late wilt disease in corn – diagnosis and control Publications: 20, 21, 35, 36, 37, 44, 47, 51	Ohalo Academic College 27,000 NIS	2206-2012

d. Submission of Research Proposals - Pending

Role in	Co-	Topic	Funded by	Year
Research	Researchers			

Co- Investigator	Dr. Tamar Dayan, Dr. Yael Teff Seker	Regenerative economy & Agribiotechnology in cotton production	BARD	2026
Initiator and work package leader	A consortium of 14 partners from Europe and Israel	MolecuLeaf: Bio-Molecules to Protect Crops: A Sustainable Approach	HORIZON- CL6-2025-02- FARM2FORK- 01-two-stage: Emerging and future risks to plant health	2026
PI	Dr. Ofir Benjamin	Onion Seed Microbiome Endophytic Enrichment for Basal Rot Protection	Israel Plant Council, Ministry of Agriculture	2026
PI	Ms. Netta Mor Mr. Muhammad Abu Tuama Mr. Lidan Falah	Examining the use of Trichoderma to control Macrophomina in strawberries	Israel Plant Council, Ministry of Agriculture	2026

e. Submission of Research Proposals – Not Funded (5 years)

Role in Research	Co- Researchers	Topic	Funded by	Year	Score
PI	Dr. Sanaa Musa	Biocontrol of Wilt Diseases in Maize and Cotton through Fungal Extrolites	ICA	2025	n.a.
Co- Investigator	Dr. Tamar Dayan, Dr. Yael Teff Seker	Regenerative economy & Agri-biotechnology in cotton production	BARD	2025	4
PI	Dr. Ofir Benjamin	Onion Seed Microbiome Endophytic Enrichment for Basal Rot Protection	Israel Plant Council, Ministry of Agriculture	2025	n.a.

PI	Ms. Netta Mor	Examining the use of Trichoderma to control	Israel Plant Council,	2025	n.a.
	Mr. Muhammad Abu Tuama	Macrophomina in strawberries	Ministry of Agriculture		
	Mr. Lidan Falah				
Co-PI	Gold, Scott E (PI)	From fungal chemical crosstalk to biological control in corn	BARD	2024	3
PI	Dr. Onn Rabinovitz Dr. Assaf Chen Mr. Eyal Ben Simhon	Biological enrichment of cover plants, pre-growing cotton with minimum tillage, for protection against the charcoal rot disease (Macrophomina)	Israel Ministry of Agriculture and Rural Development Chief Scientist	2024	n.a.
Co-PI	Gold, Scott E (PI)	Chemical Crosstalk Controlling the Maize Seed Fungal Pathobiome	BARD	2023	4
PI	Dr. Onn Rabinovitz	Strengthening the corn seeds' microbiome to prevent late wilt diseases	ICA – Migal accelerator, Israel	2023	n.a.
PI	Prof. Giora Rytwo Dr. Onn Rabinovitz	Development of an Azoxystrobin slow-release carrier to control the maize late wilt causal agent	Israel Ministry of Agriculture and Rural Development Chief Scientist	2023	n.a.
PI	Dr. Shaul Naschitz Prof. Soliman Khatib Prof. Dov Prusky	The formation process of Alternaria black spot disease in stored persimmons and its prevention through treatments with antioxidants	Israel Ministry of Agriculture and Rural Development Chief Scientist	2023	n.a.
Co-PI	Dr. Elhanan Tzipilevich (PI)	Development of a Bacillus species-based biological control interface against corn diseases	Israel Ministry of Agriculture and Rural Development Chief Scientist	2023	n.a.

PI	Dr. Onn	Combined biological-	Israel Plant	2023	n a
L1	Rabinovitz Mr. Lior Avraham	chemical pest control for the prevention of late wilt disease in corn	Council, Ministry of Agriculture	2023	n.a.
PI	Prof. Giora Rytwo Dr. Onn Rabinovitz	Development of an Azoxystrobin slow-release carrier to control the maize late-wilt causal agent	Israel Ministry of Agriculture and Rural Development Chief Scientist	2022	n.a.
PI	Dr. Shaul Naschitz Prof. Soliman Khatib Prof. Dov Prusky	The formation process of <i>Alternaria</i> black spot disease in stored persimmons and its prevention through treatments with antioxidants	Israel Ministry of Agriculture and Rural Development Chief Scientist	2022	n.a.
PI	Prof. Giora Rytwo Dr. Onn Rabinovitz	Developing an Azoxystrobin slow-release clay carrier for eco- friendly control of corn late wilt and cotton charcoal rot diseases	Israel Ministry of Science and Technology	2022	n.a.
PI	Dr. Onn Rabinovitz	Combined biological- chemical pesticide to prevent late wilt in corn	Israel Plant Council, Ministry of Agriculture	2022	n.a.
PI	Prof. Soliman Khatib	Purification, identification, and the first application of <i>Trichoderma</i> sp. (P1) secreted ingredients with antifungal activity against <i>Magnaporthiopsis maydis</i> , the maize late-wilt disease causal agent	Tomorrow's Crop Protection Challenge, ADAMA, and GrowingIL	2021	n.a.
PI	Dr. Onn Rabinovitz	Develop eco-friendly control interphase against the late wilt disease in corn by strengthening the soil mycorrhizal networks	Israel's Organization of extensive cultivation	2021	n.a.
PI	Dr. Onn Rabinovitz	Develop eco-friendly control interphase against the late wilt disease in corn by strengthening the soil mycorrhizal networks	Nekudat-Hen	2021	n.a.

PI	Dr. Onn Rabinovitz	Interactions between Magnaporthiopsis maydis and Fusarium spp., the causes of wilt and rot diseases in maize	Israel's Organization of extensive cultivation	2020	n.a.
PI	Dr. Onn Rabinovitz	Interactions between Magnaporthiopsis maydis and Fusarium spp., the causes of wilt and rot diseases in maize	Nekudat-Hen	2020	n.a.

9. Scholarships, Awards, and Prizes

2015, 2018 - 2025 — Excellence in Research Acknowledgment. Tel-Hai College (Israel).

2016 – 2019, 2021 - 2022 **– Staff member Excellency Acknowledgment.** Tel-Hai College (Israel).

2021 – Certificate of Appreciation for Publications Achievement, Faculty of Science. Tel-Hai College (Israel). Accompanied by a financial grant of 3,000 NIS.

10. Teaching

a. Courses Taught in Recent Years

Year	Name of Course	Type of Course	Degree	Number of Students
2008 - Today	Experimental Design, Tel-Hai College (Israel)	Lecture + lab	B.Sc.	Ca. 80/year
2008 - Today	Biochemistry Lab, Tel-Hai College (Israel)	lab	B.Sc.	Ca. 90/year
2008 - 2021	Practice in Computational Biochemistry, Tel- Hai College (Israel)	Exercise	B.Sc.	Ca. 80/year
2013 - 2017	Scientific Excursions, Ohalo College (Israel)	Field study	B.Ed.	Ca. 40/year
2012- 2017	Botany, Ohalo College (Israel)	Lecture + lab	B.Ed.	Ca. 40/year

2012- 2016	Molecular Biology, Ohalo College (Israel)	Lecture + lab	B.Ed.	Ca. 40/year
2012-	Evolution, Ohalo	Lecture	B.Ed.	Ca. 40/year
2016	College (Israel)			
2001-	Plant Physiology,	Lecture + lab	B.Ed.	Ca. 40/year
2017	Ohalo College			
	(Israel)			
2001-	Life of Plants, Ohalo	Lecture + lab	B.Ed.	Ca. 40/year
2017	College (Israel)			·

b. Supervision of Graduate Students

Publications related to research are referenced by referring to the number in the list of publications

Name of Student	Title of Thesis	Degree	Date of Completion / in Progress	Students' Achievements
Dr. Ofra Dahar	Involvement of laccases in the maize pathogen Harpophora maydis - host interactions	Post- Doc.	2018	Publication: 30

Name of Student	Title of Thesis	Degree	Date of Completion / In Progress	Co- supervisor	Students' Achievements
Sahed Ganaim	Onion Seed Microbiome: Pathogen Dynamics and Endophyte Enrichment for Disease Control.	M.Sc.	In progress		
Rima Ganaim	Development of a Trichoderma-Based Control and Electronic Nose Method for Identifying and Analyzing Onion Basal Rot Disease.	M.Sc.	In progress		

Eden Atdegi	The Microflora of Maize and Cotton Grains as a Biological Barrier against Israel's corn late wilt and cotton charcoal rot diseases	M.Sc.	In progress		
Ariel Hadad	Developing an Azoxystrobin slow- release clay carrier for eco-friendly control of corn late wilt and cotton charcoal rot diseases	M.Sc.	In progress		
Asaf Gordani	Combined biological- chemical treatment for eco-friendly control of corn late wilt and cotton charcoal rot diseases in Israel	M.Sc.	2024		Publications: 6, 8, 9, 11, 12
Tamir Sonnenberg	Vines resistant mechanism towards foliage diseases: Powdery mildew and Downy mildew	M.Sc.	2024	Dr. Meir Shlisel, Dr. Mery Dafny Yelin, Dr. Tirtza Zahavi Tel-Hai College (Israel)	Publications:
Galia Shofman	Intra-species interaction and interrelation with Fusarium verticillioides in the maize pathogen Magnaporthiopsis maydis in causing the maize wilt diseases	M.Sc.	2024		Publication: 3, 5, 15
Marlen Bahouth	The maize late wilt disease agent, Magnaporthiopsis maydis, geographic distribution, and aggressiveness in Israel	M.Sc. final project, track without a thesis	2022		Publication: 15

Ben Kalman	Involvement of Fusarium oxysporum f. sp. cepae in onion rot: Characterization of the disease cycle, diagnosis, and control	M.Sc.	2020	Prof. Rafael Perl-Treves Faculty of Life Sciences, Bar-Ilan University	Publications: 27, 32
Shlomit Dor	Inducing resistance and control against <i>Harpophora maydis</i> , the cause of the late wilt disease in maize	M.Sc.	2019	Dr. Doron Goldberg Tel-Hai College (Israel)	Publications: 19, 29, 25, 26, 29, 31, 33, 34, 35 Awarded by the Israel Phytopathology Society (IPS, 2019)
Daniel Movshowitz	Chemical protection against <i>Harpophora</i> <i>maydis</i> , the causing agent of maize late wilt	M.Sc.	2018	Dr. Doron Goldberg Tel-Hai College (Israel)	Publications: 35, 36, 37
Yuval Goldblat	Host physiology and environmental stress involved in the development and pathogenesis of <i>Harpophora maydis</i> and the application of seed dressing to control late wilt	M.Sc.	2015	Dr. Doron Goldberg Tel-Hai College (Israel)	Publications: 30, 36, 40, 42
Shani Cohen	Environmental conditions regulate the development of the maize late wilt-causal agent, <i>Harpophora maydis</i>	M.Sc. final project, track without a thesis	2014		
Gilad Cernica		M.Sc.	2012	Dr. Doron Goldberg Tel-Hai College (Israel)	Publication: 47

Ran Drori	Involvement of	M.Sc.	2009	Dr. Maggie	Publications:
	Harpophora maydis in			Levy	40, 51
	wilt of sweet corn:				
	Characterization of the			The Robert	Awarded by
	disease cycle and			H. Smith	the Israel
	development of			Faculty of	Phytopathology
	protection and control			Agricultural,	Society (IPS,
	maydis - host			Food and	2009)
	interactions			Environment	
				al the	
				Hebrew	
				University of	
				Jerusalem	
				(Israel)	

11. Professional Experience

- 1. **2022 Today** Leading the graduate students' program at the Tel-Hai Center of Science and Knowledge for Gifted and Excellent Children at Tel-Hai Academic College, Israel Ministry of Education, Division for Gifted and Outstanding Students (Israel).
- 2014 2017 Head of the North Israel Group of Centers for Gifted and Talented Children, Israel Ministry of Education, Division for Gifted and Outstanding Students (Israel).
- 3. **2008 2021** Director of the Tel-Hai Center of Science and Knowledge for Gifted and Excellent Children at Tel-Hai Academic College, Israel Ministry of Education, Division for Gifted and Outstanding Students (Israel).

PUBLICATIONS

A. Ph.D. Dissertation

G protein and MAPK pathways in the maize pathogen *Cochliobolus* heterostrophus: signaling for gene expression, development, and virulence. (2005) Technion Institute of Technology (Israel), under the supervision of Prof. Benjamin Horwitz. English, 172 pages. Publications: 38, 43, 45, 46, 48, 49, 50

B. Articles in Refereed Journals

Published

1. Zonenberg T., Zahavi T., **Degani O.**, Shlisel M., Striem M., and Dafny-Yelin M. Hybrid grapevine resistance mechanism to downy and powdery

- mildews in Israel under warm Middle Eastern conditions. (2025), *Plant Disease*, (Link).
- IF (4.4) b, 5-years-IF (4.8), CiteScore (4.5), Citation number ^d (0), Journal Rank and Quartile: JCR Q1 (Plant Sciences).
- 2. **Degani O.** ^a, Levy M., Horwitz A. B. Plant-Friendly Microorganisms as a Bio-Barrier Against Pathogens. *Frontiers in Fungal Biology* (2025); 6 1659453. (Link).
 - IF (3.8) b, 5-years-IF (3.4), CiteScore (4.8), Citation number d (0), Journal Rank and Quartile: JCR Q2 / CiteScore Q1.
- 3. **Degani O.** Plant Fungal Diseases and Crop Protection. *Journal of Fungi.* (2025); 11(4): 274. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (2), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 4. Shofman G., **Degani O**. ^a Interspecies crosstalk between *Magnaporthiopsis maydis* and *Fusarium verticillioides* in mutually infected maize plants. *Scientific Reports* (2025), 15, 10089. (Link).
 - IF (3.9) b, 5-years-IF (4.3), CiteScore (6.7), Citation number d (0), Journal Rank and Quartile: JCR Q1 (Multidisciplinary).
- 5. Shofman G., **Degani O**. ^a Mixed fungal strains challenge host resistance: insights into *Magnaporthiopsis maydis* pathogenicity in maize. *Frontiers in Microbiology* (2025), 16, 1520237. (Link).
 - IF (4.5) b, 5-years-IF (5.2), CiteScore (8.5), Citation number d (1), Journal Rank and Quartile: JCR Q1 / CiteScore Q1.
- 6. **Degani O**. ^a, Ayoub A., Dimant E., Gordani A. Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent, *Magnaporthiopsis maydis. Frontiers in Fungal Biology* (2024), 5: 1436759. (Link).
 - IF (3.8) b, 5-years-IF (3.4), CiteScore (4.8), Citation number d (1), Journal Rank and Quartile: JCR Q2 / CiteScore Q1.
- 7. **Degani O**. ^a, Dimant E., Margalit E. Impact of *Fusarium* species composition and incidence on onion basal rot in northeastern Israel. *Horticulturae* (2024), 10, 373. (Link).
 - IF(3.0) b, 5-years-IF (3.2), CiteScore (5.1), Citation number d (2), Journal Rank and Quartile: JCR Q1 (*Horticulture*) / CiteScore Q2 (*Horticulture*), Q1 (*Plant Sciences*).
- 8. **Degani O**. ^a, Chen A., Dimant E., Gordani A., Malul T., Rabinovitz O. Integrated management of the cotton charcoal rot disease using biological agents and chemical pesticides. *Journal of Fungi* (2024), 10, 250. (<u>Link</u>).

- IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (4), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 9. **Degani O.** ^a, Gordani A., Dimant E., Chen A., and Rabinovitz O. The cotton charcoal rot causal agent, *Macrophomina phaseolina*, biological and chemical control. *Frontiers in Plant Science* (2023) 14, 1272335. (Link).
 - IF (4.8) b, 5-years-IF (5.7), CiteScore (8.8), Citation number d (6), Journal Rank and Quartile: JCR / CiteScore Q1 (Plant Sciences).
- 10. Dimant E., **Degani O**. a, Molecular Real-Time PCR monitoring of onion *Fusarium* basal rot chemical control. *Journal of Fungi* (2023), 9, 809 (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (12), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 11. **Degani O**. ^a, Becher P., Gordani, A. Real-time PCR early detection of *Trichoderma* treatments efficiency against cotton charcoal rot disease. *Journal of Natural Pesticide Research* (2023), 4, 100027. (<u>Link</u>).
 - IF (n/a new journal), CiteScore (4.2), Citation number ^d (17), Journal Rank and Quartile (n/a) new journal.
- 12. Gordani A., Hijazi B., Dimant E., **Degani O**. ^a. Integrated biological and chemical control against the maize late wilt agent *Magnaporthiopsis maydis*. *Soil Systems* (2023), 7(1), 1. (Link).
 - IF (3.5) b, 5-years-IF (3.8), CiteScore (5.4), Citation number d (16), Journal Rank and Quartile: JCR Q2 (Soil Science) / CiteScore Q1 (Earth-Surface Processes).
- 13. **Degani**, **O**. ^a, Yifa R., Chen A., Gordani A., Becher P. Cultivars resistance assay for maize late wilt disease. *Biology* (2022), 11(12), 1854. (Link).
 - IF (3.5) b, 5-years-IF (4.0), CiteScore (7.4), Citation number d (12), Journal Rank and Quartile: JCR Q1 (Biology) / CiteScore Q1 (General Agricultural and Biological Sciences).
- 14. **Degani O**. ^a, Elhanan D., Gordani A., Graph S., Margalit E. Prevention and control of *Fusarium* spp. *cepae*, the causal agent of onion (*Allium cepa*) basal rot. *Horticulturae* (2022), 8 (11), 1071. (Link). Editor's choice.
 - IF (3.0) b, 5-years-IF (3.2), CiteScore (5.1), Citation number d (26), Journal Rank and Quartile: JCR Q1 (*Horticulture*) / CiteScore Q2 (*Horticulture*), Q1 (*Plant Sciences*).
- 15. Shofman G., Bahouth M., **Degani O**. a. Aggressive strains of the late wilt fungus of corn exist in Israel in mixed populations and can specialize in disrupting growth or plant health. *Fungal Biology* (2022), 126(11-12), 793-808. (<u>Link</u>)
 - IF (3.0) b, 5-years-IF (2.9), CiteScore (4.8), Citation number d (11), Journal Rank and Quartile: JCR Q2 (Mycology) / CiteScore Q1

- 16. **Degani O**. ^a, Gordani, A. New antifungal compound, 6-pentyl-α-pyrone, against the maize late wilt pathogen, *Magnaporthiopsis maydis*. *Agronomy* (2022), 12 (10), 2339. (Link). **Editor's choice**.
 - IF (3.4) b, 5-years-IF (3.8), CiteScore (6.7), Citation number d (32), Journal Rank and Quartile: JCR Q1 (Agronomy), Q1 (Plant Sciences) / CiteScore Q1 (Agronomy and Crop Science).
- 17. **Degani O**. ^a, Gordani A., Becher P., Chen A., Rabinovitz O. Crop rotation and minimal tillage selectively affect maize growth promotion under late wilt disease stress. *Journal of Fungi* (2022), 8(6): 586. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (16), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 18. **Degani O**. ^a, Becher P., Gordani A. Pathogenic interactions between *Macrophomina phaseolina* and *Magnaporthiopsis maydis* in mutually infected cotton sprouts. *Agriculture* (2022), 12 (2), 255. (<u>Link</u>).
 - IF (3.6) b, 5-years-IF (3.8), CiteScore (6.3), Citation number d (21), Journal Rank and Quartile: JCR Q1 (Agronomy) / CiteScore Q1 (Plant Science), Q1 (Agronomy and Crop Science).
- 19. **Degani O.** ^a, Chen A., Dor S., Orlov-Levin, V., Jacob M., Shoshani G., Rabinovitz O. Remote evaluation of maize cultivars susceptibility to late wilt disease caused by *Magnaporthiopsis maydis*. *Journal of Plant Pathology* (2022) 104, 509–525. (Link). Editor's choice.
 - IF (2.0) $^{\rm b}$, 5-years-IF (2.3), CiteScore (1.8), Citation number $^{\rm d}$ (15), Journal Rank and Quartile: JCR Q2 (Plant Science) / CiteScore Q3 (Plant Science),
- 20. **Degani O.** Control strategies to cope with late wilt of maize. *Pathogens* (2022), 11, 13. (Link).
 - IF (3.3) b, 5-years-IF (3.6), CiteScore (6.8), Citation number d (14), Journal Rank and Quartile: CR Q2 (Microbiology) / CiteScore Q1 (Infectious Diseases), Q1 (General Immunology and Microbiology).
- 21. **Degani O.** A Review: late wilt of maize—the pathogen, the disease, current status and future perspective. *Journal of Fungi* (2021), 7 (11), 989. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (32), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 22. **Degani O**. a, Khatib S., Becher P., Gordani A., Harris R. *Trichoderma* asperellum secreted 6-pentyl-α-pyrone to control *Magnaporthiopsis* maydis, the maize late wilt disease agent. *Biology* (2021), 10 (9), 897. (Link).

- IF (3.5) b, 5-years-IF (4.0), CiteScore (7.4), Citation number d (46), Journal Rank and Quartile: JCR Q1 (Biology) / CiteScore Q1 (General Agricultural and Biological Sciences).
- 23. **Degani O**. ^a, Gordani A., Becher P., Dor S. Crop cycle and soil cultivation role in the outbreak of late wilt disease of maize, caused by *Magnaporthiopsis maydis. Journal of Fungi* (2021), 7 (9), 706. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (14), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 24. **Degani O**. ^a, Rabinovitz O., Becher P., Gordani A., Chen A. *Trichoderma longibrachiatum* and *Trichoderma asperellum* confer growth promotion and protection against late wilt disease in the field. *Journal of Fungi* (2021), 7 (6), 444. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (52), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 25. **Degani O**. ^a, Regev D., Dor S. The microflora of maize grains as a biological barrier against the late wilt causal agent, *Magnaporthiopsis maydis*. *Agronomy* (2021), 11 (5), 965. (Link). Editor's choice.
 - IF (3.4) b, 5-years-IF (3.8), CiteScore (6.7), Citation number d (35), Journal Rank and Quartile: JCR Q1 (Agronomy), Q1 (Plant Sciences) / CiteScore Q1 (Agronomy and Crop Science).
- 26. **Degani O**. ^a, Dor S. *Trichoderma* biological control to protect sensitive maize hybrids against late wilt disease in the field. *Journal of Fungi* (2021), 7 (4), 315. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (85), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 27. **Degani O**. ^a, Kalman B. Assessment of commercial fungicides against onion (*Allium cepa*) basal rot disease caused by *Fusarium oxysporum* f. sp. *cepae* and *Fusarium acutatum*. *Journal of Fungi* (2021), 7 (3), 235. (<u>Link</u>).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (44), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 28. **Degani, O.** Synergism between cutinase and pectinase in the hydrolysis of cotton fibers' cuticle. *Catalysts* (2021), 11 (1), 84. (Link).
 - IF (4.0) b, five years-IF (4.0), CiteScore (7.6), Citation number d (22), Journal Rank and Quartile: JCR Q2 (Chemistry, Physical) / CiteScore Q1 (General Environmental Science / Physical and Theoretical Chemistry)

- 29. **Degani O**. ^a, Regev D., Dor S., Rabinowitz, O. Soil bioassay for detecting *Magnaporthiopsis maydis* infestation using a hyper susceptible maize hybrid. *Journal of Fungi* (2020), 6 (3), 107. (<u>Link</u>).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (22), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- **30**. **Degani O.** ^a, Goldblat Y. Potential role of laccases in the relationship of the maize late wilt causal agent, *Magnaporthiopsis maydis*, and its host. *Journal of Fungi* (2020), 6 (2), 63. (Link).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (10), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 31. **Degani O.** ^a, Dor S., Chen A., Orlov-Levin V., Stolov-Yosef A., Regev D., Rabinovitz O. Molecular tracking and remote sensing to evaluate new chemical treatments against the maize late wilt disease causal agent, *Magnaporthiopsis maydis. Journal of Fungi* (2020), 6 (2), 54. (<u>Link</u>).
 - IF (4.0) b, 5-years-IF (4.5), CiteScore (8.4), Citation number d (34), Journal Rank and Quartile: JCR Q1 (Mycology) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics), Q1 (Plant Science).
- 32. Kalman B., Abraham D., Graph S., Perl-Treves R., Meller Harel Y., **Degani O.** ^a Isolation and identification of *Fusarium* spp., the causal agents of onion (*Allium cepa*) basal rot in northeastern Israel. *Biology* (2020), 9 (4), 69. (<u>Link</u>). <u>Editor's choice</u>.
 - IF (3.5) b, 5-years-IF (4.0), CiteScore (7.4), Citation number d (100), Journal Rank and Quartile: JCR Q1 (Biology) / CiteScore Q1 (General Agricultural and Biological Sciences).
- 33. **Degani O**. ^a, Dor S., Abraham D., Cohen R. Interactions between *Magnaporthiopsis maydis* and *Macrophomina phaseolina*, the causes of wilt diseases in maize and cotton. *Microorganisms* (2020), 8 (2), 249. (Link).
 - IF (4.2) b, 5-years-IF (4.6), CiteScore (7.7), Citation number d (49), Journal Rank and Quartile: JCR Q2 (Microbiology) / CiteScore Q1 (Microbiology / Virology).
- 34. Dor S., **Degani O.** ^a Uncovering the host range for maize pathogen *Magnaporthiopsis maydis. Plants* (2019), 8 (8), 259. (<u>Link</u>).
 - IF (4.1) b, 5-years-IF (4.5), CiteScore (7.6), Citation number d (30), Journal Rank and Quartile: JCR Q1 (Plant Sciences) / CiteScore Q1 (Ecology, Evolution, Behavior and Systematics / Plant Sciences).
- 35. **Degani O**. ^a, Dor S., Movshovitz D., Rabinovitz O. Methods for studying *Magnaporthiopsis maydis*, the maize late wilt causal agent. *Agronomy* (2019), 9 (4), 181. (Link).

- IF (3.4) b, 5-years-IF (3.8), CiteScore (6.7), Citation number d (41), Journal Rank and Quartile: JCR Q1 (Agronomy), Q1 (Plant Sciences) / CiteScore Q1 (Agronomy and Crop Science).
- **36**. **Degani O.** ^a, Movshowitz D., Dor S. Meerson A. Goldblat Y., Rabinovitz O. Evaluating Azoxystrobin seed coating against maize late wilt disease using a sensitive qPCR-based method. *Plant Disease* (**2019**), 103 (2)238-248. (Link).
 - IF (4.4) b, 5-years-IF (4.8), CiteScore (4.5), Citation number d (48), Journal Rank and Quartile: JCR Q1 (Plant Sciences).
- 37. **Degani O**. ^a, Dor S., Movshowitz D., Fraidman E., Rabinowitz O., Graph, S. Effective chemical protection against the maize late wilt causal agent, *Harpophora maydis*, in the field. *PloS ONE* (2018), 13 (12), e0208353 (<u>Link</u>).
 - IF (2.6) b, 5-years-IF (3.8), CiteScore (5.6), Citation number d (41), Journal Rank and Quartile: JCR / CiteScore Q1 (Multidisciplinary Sciences).
- 38. **Degani O.** *Cochliobolus heterostrophus* T-toxin gene expression modulation via G protein and MAPK pathways. *Plant Protection Science* (2015), 51 (2), 53–60. (Link).
 - IF (1.4) b, 5-years-IF (1.4), CiteScore (3.0), Citation number d (3), Journal Rank and Quartile: JCR Q3 (Agronomy / Plant Sciences). CiteScore Q2 (Agronomy and Crop Science / Soil Science).
- 39. **Degani O.** Production and purification of cutinase from *Fusarium oxysporum* using modified growth media and specificity cutinase substrate. *Advances in Bioscience and Biotechnology* (2015), 6 (4), 245-258. (Link).
 - IF (1.26) °, five years-IF (n/a), Citation number $^{\rm d}$ (15), Journal Rank and Quartile: n/a
- 40. **Degani O**. ^a, Drori R., Goldblat Y. Plant growth hormones suppress the development of *Harpophora maydis*, the cause of late wilt in maize. *Physiology and Molecular Biology of Plants* (2015), 21 (1), 137-149. (Link).
 - IF (3.3) b, 5-years-IF (3.9), CiteScore (6.9), Citation number d (50), Journal Rank and Quartile: JCR Q1 (Plant Sciences).
- 41. **Degani O**. Mediation of fungicide fludioxonil activity and resistance through *Cochliobolus heterostrophus* G-protein and MAPK signaling pathways. *Phytoparasitica* (2015), 43 (2), 215-228. (<u>Link</u>).
 - IF (1.5) b, 5-years-IF (1.6), CiteScore (2.4), Citation number d (4), Journal Rank and Quartile: JCR Q2 (Plant Sciences).
- 42. **Degani O.** ^a, Goldblat Y. Ambient stresses regulate the development of the maize late wilt causing agent, *Harpophora maydis*. *Agricultural Sciences* (2014), 5 (7), 571-582. (Link).
 - IF (1.22) °, 5-years-IF (n/a), Citation number d (26), Journal Rank and Quartile: n/a

- **43**. **Degani O.** Pathogenicity assay for *Cochliobolus heterostrophus* G-Protein and MAPK signaling deficiency strains. *American Journal of Plant Sciences* (2014), 5 (9), 1318-1328. (Link).
 - IF (1.57) $^{\rm c}$, 5-years-IF (n/a), Citation number $^{\rm d}$ (8), Journal Rank and Quartile: n/a
- 44. **Degani O.** ^a, Weinberg T., Graph S. Chemical control of maize late wilt in the field. *Phytoparasitica* (2014), 42 (4), 559-570. (Link).
 - IF (1.5) b, 5-years-IF (1.6), CiteScore (2.4), Citation number d (37), Journal Rank and Quartile: JCR Q2 (Plant Sciences).
- 45. **Degani O.** G protein and MAPK signaling pathways control the ability of *Cochliobolus heterostrophus* to exploit different carbon sources. *Advances in Biological Chemistry* (2014), 4 (1), 40-50. (<u>Link</u>).
 - IF (1.35) °, 5-years-IF (n/a), Citation number d (4), Journal Rank and Quartile: n/a
- **46**. **Degani O.** Gene expression modulation of two biosynthesis pathways via signal transduction in *Cochliobolus heterostrophus*. *Advances in Bioscience and Biotechnology* **(2014)**, 5 (4), 340-352. (<u>Link</u>).
 - IF (1.26) °, 5-years-IF (n/a), Citation number $^{\rm d}$ (3), Journal Rank and Quartile: n/a
- 47. **Degani O.** a and Cernica, G. Diagnosis and control of *Harpophora maydis*, the cause of late wilt in maize. *Advances in Microbiology* (**2014**), 4 (2), 94-105. (Link).
 - IF (1.35) $^{\rm c}$, 5-years-IF (n/a), Citation number $^{\rm d}$ (53), Journal Rank and Ouartile: n/a
- 48. **Degani O.** Construction of a constitutively activated Gα mutant in the maize pathogen *Cochliobolus heterostrophus*. *American Journal of Plant Sciences*. (2013), 4 (12), 2394-2399. (Link).
 - IF (1.57) $^{\rm c}$, 5-years-IF (n/a), Citation number $^{\rm d}$ (2), Journal Rank and Quartile: n/a
- 49. **Degani O.** ^a, Lev S., Ronen M. Hydrophobin gene expression in the maize pathogen *Cochliobolus heterostrophus*, *Physiological and Molecular Plant Pathology*. **(2013)**, 83, 25-34 (<u>Link</u>).
 - IF (3.3) b, 5-years-IF (3.2), CiteScore (5.0), Citation number d (16), Journal Rank and Quartile: JCR Q2 (Plant Sciences).
- 50. **Degani O.** a *Cochliobolus heterostrophus* G-protein alpha and beta subunit double mutant reveals shared and distinct roles in development and virulence, *Physiological and Molecular Plant Pathology.* (2013), 82, 35-45. (Link).
 - IF (3.3) b, 5-years-IF (3.2), CiteScore 5.0, Citation number d (11), Journal Rank and Quartile: JCR Q2 (Plant Sciences).

- 51. Drori R., Goldberg D., Rabinovitz O., Sharon A., Levy M., **Degani O**. ^a. Molecular diagnostic for *Harpophora maydis*, the cause of late wilt disease in northern Israel. *Phytopathologia Mediterranea*. (2013), 52 (1), 16–29. (Link).
 - IF (1.9) b, 5-years-IF (2.5), CiteScore (3.7), Citation number d (72), Journal Rank and Quartile: Plant Sciences (Q1).
- 52. Igbaria A., Lev S., Rose M. S, Lee B. N., Hadar R., **Degani, O.**, Horwitz B. A. Distinct and combined roles of the MAP kinases of *Cochliobolus heterostrophus* in virulence and stress responses, *Molecular Plant-Microbe Interactions.* (2008), 21 (6), 769-80. (Link).
 - IF (3.4) b, 5-years-IF (3.4), CiteScore (6.1), Citation number d (87), Journal Rank and Quartile: JCR Q1 (Agronomy and Crop Science and Biochemistry / Genetics and Molecular Biology).
- 53. **Degani O.**, Salman H, Gepstein S., Dosoretz C. G. Synthesis and characterization of a new cutinase substrate, 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate. *Journal of Biotechnology*. (2006), 121 (3), 346-350. (Link).
 - IF (3.9) b, 5-years-IF (3.8), CiteScore (8.5), Citation number d (26), Journal Rank and Quartile: JCR Q2 (Biotechnology, Applied Microbiology and Biotechnology, and Bioengineering).
- 54. **Degani O.**, Maor R., Hadar R., Sharon A., Horwitz B. A. Host physiology and pathogenic variation of *Cochliobolus heterostrophus* strains with mutations in the G protein alpha subunit, CGA1. *Applied and Environmental Microbiology*. **(2004)**, 70 (8), 5005-5009. (Link).
 - IF (3.7) b, 5-years-IF (4.5), CiteScore (7.2), Citation number d (34), Journal Rank and Quartile: JCR -Q1 (Environmental Science Ecology / Agricultural and Biological Sciences Food Science).
- 55. **Degani O.**, Gepstein S., Dosoretz C. G. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-beta-glucuronidase fused protein. *Journal of Biotechnology.* (2004), 107 (3), 265-273. (<u>Link</u>).
 - IF (3.9) b, 5-years-IF (3.8), CiteScore (8.5), Citation number d (37), Journal Rank and Quartile: JCR Q2 (Biotechnology, Applied Microbiology and Biotechnology, and Bioengineering).
- 56. **Degani O.**, Gepstein S., Dosoretz C. G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. *Applied Biochemistry and Biotechnology.* (2002), 102 (1), 277-289. (Link).
 - IF (3.3) b, 5-years-IF (3.1), CiteScore (5.1), Citation number d (124), Journal Rank and Quartile: JCR Q2 (Biochemistry & Molecular Biology / Biotechnology and Applied Microbiology).

^a Corresponding author

^b Official 2023-25 impact factor – ISI Web of Science – Journal Citation Report

C. Editing Refereed Scientific Books

1. **Ofir Degani** (Ed.). Plant Fungal Diseases and Crop Protection. Reprint of the Special Issue Plant Fungal Diseases and Crop Protection that was published in the Journal of Fungi. June 2025. 238 pages. (<u>Link</u>).

D. Articles or Chapters in Refereed Scientific Books

- 2. **Degani O.** Bio-Hydrolysis of Cotton Fibers⁷ Cuticle Enhanced by Synergism between Cutinase and Pectinase. In Advances in Biology. (2024) Volume 7, Charles D. Grant (Editor), Nova Science Publishers, Inc. NY, USA, Chapter 4, pp 131-162. (Link).
- 3. **Degani O.** Late Wilt of Maize: The Pathogen, the Disease, Current Status, and Future Perspective. In: Verma, P.K., Mishra, S., Srivastava, V., Mehrotra, S. (eds) Plant Pathogen Interaction. (2024) Springer, Singapore. (<u>Link</u>). Citation number (3)
- 4. **Degani O.** A Green Solution to Maize Late Wilt Disease. In *Trichoderma*: Taxonomy, Biodiversity and Applications. Nova Science Publishers, Inc. (2023), chapter 3. 65-82. (<u>Link</u>).
- 5. Chen A., Jacob M., Shoshani G., Dafny-Yelin M., **Degani O.**, Rabinovitz O. Early detection of soil-borne diseases in field crops via remote sensing. *Precision Agriculture '21* (2021), Editor John V. Stafford. 217 224. (<u>Link</u>).
- 6. **Degani, O.** Accurate virulence test method for *Cochliobolus heterostrophus* wild-type and mutant strains in the post-genomic era. *In* Pathogenicity of *Cochliobolus* Species in Post Genomic Era. 1st Edition. Bengyella L. and Devi Waikhom S. (Eds.). Stadium Press LLC, Texas, USA, (2017), chapter 4, 92-111.

E. Accepted for Publication

F. Articles in Conference Proceedings

1. **Degani O.**, Gordani A., Dimant E., Rabinovitz O. Integrated biological-chemical interface for eco-friendly control of maize late wilt and cotton

^c The 2-year Google-based Journal Impact Factor, 2021-2022 (2-GJIF) based on Thomson Reuters⁷ (TR) algorithm, as published on http://wokinfo.com/essays/impact-factor

^d Based on Google Scholar 19/10/2025 (see here)

- charcoal rot diseases. Biological and Integrated Control of Plant Pathogens. IOBC-WPRS Bulletin Vol. 177, 14/06/2025, pp. 249-254. (<u>Link</u>).
- 2. **Degani O.**, Ayoub A., E., Gordani A., Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent, *Magnaporthiopsis maydis*. Biological and Integrated Control of Plant Pathogens IOBC-WPRS Bulletin Vol. 177, 14/06/2025, p. 95. (Link).

G. Entries in Refereed Encyclopedias

3. **Degani O.** Topic review: Strategies to Cope with Late Wilt of Maize. In: *Encyclopedia* platform (MDPI), Subjects: Agriculture, Dairy and Animal Science. (2022). (Link).

H. Other Publications

- 1. Dafny Yelin M., Zonenberg T., Shlisel M., **Degani O.**, and Tirza Zahavi, Examination of the resistance of hybrid grapevine bunches to downy mildew and powdery mildew 'Alon Hanotea', 81, (2024), 28-31. [Hebrew]. (Link).
- 2. Zonenberg T., Dafny Yelin M., Shlisel M. and **Degani O.**, Examination of Hybrid grapevine varieties¹ Resistance to Downey and Powdery mildew diseases in Northern Israel¹ *Alon Hanotea*¹, 77, (2023), 16-21. [Hebrew]. (Link).
- 3. **Degani O.** A Green Solution to Maize Late Wilt Disease. IsraelAgri.com, *Israeli Agriculture International Portal.* 28 March (2022) (Link).
- 4. **Degani O.** How to promote gifted children. *Al Hazafon*, September (2021), 21. [Hebrew]. (Link).
- 5. **Degani O.** The Enemy of My Enemy is My Friend a Green Solution to Late Wilt Disease of Maize. *Mews Masove*, (2021). [Hebrew].
- 6. **Degani O.** a and Dor S. The secret life of the Maize Pathogen *Magnaporthiopsis maydis. Sade Vayerek*, The professional magazine of Israel Vegetable Growers Organization. (2019), 329, 42-45. [Hebrew]. (Link).
- 7. **Degani O.** Economical Solution for Late Wilt Disease of Corn. IsraelAgri.com, *Israeli Agriculture International Portal.* 04 March (2019). (Link).
- 8. **Degani O**. ^a, Dor S., Movshovitz D., Fraidman E., Rabinowitz O., Assaf Chen and Graph S. An economical solution for the late wilt disease of corn. *Sade Vayerek*, The professional magazine of Israel Vegetable Growers Organization. (2019), 324, 56-66. [Hebrew]. (Link).
- 9. **Degani O.** ^a, Drori R., Goldblat Y., and Dor S. Plant hormones regulate the development of *Harpophora maydis*, the maize late wilt-causing agent. *Nir Vatelem*, The professional magazine of the Israel Extensive Cultivation Organization. (2017), 71, 15-24. [Hebrew]. (Link).

- 10. **Degani O.** ^a, Goldblat Y., and Cohen S. Environmental conditions regulate the development of the maize late wilt causal agent, *Harpophora maydis*. *Nir Vatelem*, The professional magazine of the Israel Extensive Cultivation Organization. (2015), 57, 24-30. [Hebrew]. (Link).
- 11. **Degani O.** A molecular assay for *Harpophora maydis*, the cause of maize late wilt disease. *Nir Vatelem*, The professional magazine of Israel Extensive Cultivation Organization. (2013), 49, 24-31. [Hebrew]. (Link).
- 12. **Degani O.** Inquiry vs. research. Gifted, outstanding students and knowledge seekers (M.M.CH) *Journal of the Division for Gifted and Talented Students, Israel Ministry of Education, February* (2013). [Hebrew]. (Link).
- **13**. **Degani O.** Late wilt of corn, pathogenesis, and control. *Nir Vatelem,* The professional magazine of the Israel Extensive Cultivation Organization. (2011), 32, 10-13. [Hebrew]. (Link).
- 14. **Degani O.** Maize late wilt disease background and new findings. *Sade Vayerek*, The professional magazine of the Israel Vegetable Growers Organization. (2009), 10, 51-52. [Hebrew]. (Link).
- 15. **Degani O**. *Harpophora maydis* in wilt of sweet corn: Characterization of the disease cycle and development of protection and control. *Yevul-Si*, The Journal of Israeli Advanced Agriculture, Special publication of the Northern R&D. (2008). [Hebrew].

L. Articles under review or in preparation

- Degani O.^a, Abramovici A., Levi-Lion A., Demenchuk D., Hadad A., and Dimant E., Sustained release of azoxystrobin from clay carriers for the management of maize late wilt disease. (2025), World Journal of Microbiology and Biotechnology, under review.
- 2. **Degani O.**^a, Hadad A., Dimant E., Etetgi E., Levi-Lion A., Hadari P., Rabinovitz O., and Rytwo G. Clay-based azoxystrobin formulation enhances cotton protection against Macrophomina charcoal rot disease. (2025), *Journal of Cotton Research*, under review.
- 3. Hadad A., Dimant E., Hadari P., Etedgi E., Rytwo G., and **Degani O.**^a New azoxystrobin clay carrier to control corn late wilt disease. (2025), *World Journal of Microbiology and Biotechnology*, under review.
- 4. Ghanayem R., Ghanayem S., Dimant E., and **Degani O.**^a Eco-friendly Trichoderma management of Fusarium basal rot in onion. (2025), *World Journal of Microbiology and Biotechnology*, under review.
- 5. Etedgi E., Demenchuk D., Dimant E., Rabinovitz O., and **Degani O.**^a The Microbiome of Cotton Plants' Roots Under the Influence of Charcoal Rot Disease (2025), in preparation.
- 6. ^a Corresponding author

^a Corresponding author

M. Academic Achievements

Dr. Degani is an expert in phytopathology, focusing on biochemical and molecular aspects of fungal interactions with host plants. For over fifteen years, his laboratory has conducted intensive research on maize late wilt disease in Israel, a region severely impacted globally by this pathogen. Recognized as a leading expert, he has published over 30 peer-reviewed scientific papers and book chapters on this subject.

In 2018, Dr. Degani's team successfully developed a practical, efficient, and cost-effective Azoxystrobin-based control protocol now commercially used to protect susceptible maize cultivars in heavily infected areas. Since 2021, the group has further developed eco-friendly biological solutions for late wilt disease, including novel assays for detecting soil contamination and assessing the impact of green cultivation methods such as crop rotation and no-till farming. Notably, they demonstrated for the first time that *Magnaporthiopsis maydis*, the causative agent of late wilt, can colonize secondary hosts like cotton, watermelon, and green foxtail, aiding its survival.

In recent years, Dr. Degani's lab has explored the population structure and pathogenic variability of *M. maydis*, alongside its interactions with other maize pathogens like *Fusarium verticillioides*, responsible for maize stalk rot.

Additionally, the lab investigates *Macrophomina phaseolina*, the pathogen causing charcoal rot disease, which significantly threatens cotton crops in Israel and globally. Through extensive experiments utilizing Real-Time PCR for pathogen detection, the team identified antagonistic interactions between *M. maydis* and *M. phaseolina*. These interactions led to a mutual suppression of pathogens in their primary hosts during late growing stages. Further insights revealed *M. maydis* as an endophyte in cotton that could transition into a severe pathogen under specific conditions. Recently, Dr. Degani's team demonstrated the efficacy of Trichoderma-based biocontrol methods against charcoal rot.

Dr. Degani's research also encompasses *Fusarium* species causing basal rot in onions (*Allium cepa*). Using morphological analyses, DNA sequencing, and phylogenetic studies, his team identified *Neocosmospora* (formerly *Fusarium solani*) as predominant in northeastern Israel onion fields, coexisting with *Fusarium oxysporum* f. sp. *cepae* and *Fusarium acutatum*. Pathogenicity tests confirmed diverse disease severity levels among these species and revealed complex antagonistic and synergistic interactions. The research further identified effective chemical and biological control strategies.

Ongoing objectives in Dr. Degani's lab include:

- 1. Developing biological, chemical, and agricultural practices for disease management.
- 2. Manipulating plant microbiomes to create environmentally sustainable crop protection methods.
- 3. Investigating pathogen interactions to better understand plant disease dynamics.

4. Developing and implementing eco-friendly clay-based carriers for the slow-release application of Azoxystrobin against maize late wilt and cotton charcoal rot.